Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e46898.
doi: 10.1371/journal.pone.0046898. Epub 2012 Oct 8.

Adenovirus respiratory tract infections in Peru

Affiliations

Adenovirus respiratory tract infections in Peru

Julia S Ampuero et al. PLoS One. 2012.

Abstract

Background: Currently, there is a paucity of data regarding human adenovirus (HAdv) circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru.

Methods/principal findings: Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI) or severe acute respiratory infection (SARI) were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected.

Conclusions/significance: HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Flowchart for the analysis of patients with HAdv.
Figure 2
Figure 2. Samples collected, samples with a respiratory virus identified, and proportion of samples with HAdv identified by year.
Peru, 2000–2010.
Figure 3
Figure 3. Age distribution of 581 children younger than 15 years diagnosed with HAdv infection.
Peru, 2000–2010.
Figure 4
Figure 4. Distribution of HAdv isolates per month and year by regions.
Peru, 2006–2010. Northern coast: Tumbes, Piura and La Libertad; Central coast: Lima; Southern highland: Arequipa, Cusco and Puno; Jungle: Loreto, Madre de Dios, Junin and Ucayali.
Figure 5
Figure 5. Map of Peru with the distribution of the HAdv subgroups among the 11 sentinel surveillance provinces encompassing 14 cities and 38 health centers.
The provinces were: Tumbes (Tumbes: 3 sites); Piura (Piura: 2 sites, Sullana: 3 sites); La Libertad (Trujillo: 2 sites); Lima (Lima: 6 sites); Arequipa (Arequipa: 1 site); Puno (Puno: 1 site, Juliaca: 1 site); Cusco (Cusco: 1 site); Madre de Dios (Puerto Maldonado: 3 sites); Junin (La Merced: 1 site); Ucayali (Pucallpa: 1 site); Loreto (Iquitos: 12 sites, Yurimaguas: 1 site). Peru, 2006–2010.
Figure 6
Figure 6. Phylogenetic tree of adenovirus isolates in Peru during 2006–2008.
The last 280 nucleotides of the adenovirus hexon gene were amplified, sequenced, and compared to published sequences from GenBank. Samples are labeled according to the following format: “Province of collection - Sample Code - Month- Year of collection.” The comparison sequences are complete genome sequences from GenBank and are presented in the following format: “Accession Number/Serotype in Bold.” Geographical regions are color coded: northern coast region (blue), central coast region (magenta), jungle region (green), and southern highlands region (red). Nucleotide sequences were aligned using Clustal X. Phylogenetic analyses were performed using the Kimura two-parameter model as a model of nucleotide substitution and using the neighbor-joining method to reconstruct phylogenetic trees (MEGA version 2.1). The samples are grouped into species.
Figure 7
Figure 7. Phylogenetic tree of adenovirus isolates in Peru during 2009.
Figure 8
Figure 8. Phylogenetic tree of adenovirus isolates in Peru during 2010.

References

    1. Bunchen-Osmond C (2007) Taxonomy and Classification of Viruses. In: Murray P, editor. Manual of Clinical Microbiology. 9th ed. Washington D.C: ASM Press. pp. 1273–1283.
    1. Flint S, Enquist L, Racaniello V, Skalka A (2009) Adenoviruses. In: Flint S, Enquist L, Racaniello V, Skalka A, editors. Principles of virology. Third ed. Washington D.C: ASM Press. pp. 502.
    1. Han BK, Son JA, Yoon HK, Lee SI (1998) Epidemic adenoviral lower respiratory tract infection in pediatric patients: radiographic and clinical characteristics. AJR Am J Roentgenol 170: 1077–1080. - PubMed
    1. Choi EH, Lee HJ, Kim SJ, Eun BW, Kim NH, et al. (2006) Ten-year analysis of adenovirus type 7 molecular epidemiology in Korea, 1995–2004: implication of fiber diversity. J Clin Virol 35: 388–393. - PubMed
    1. Mufson MA, Belshe RB (1976) A review of adenoviruses in the etiology of acute hemorrhagic cystitis. J Urol 115: 191–194. - PubMed

Publication types

MeSH terms