Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2012 Nov 2;91(5):823-38.
doi: 10.1016/j.ajhg.2012.08.032. Epub 2012 Oct 11.

Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci

Folkert W Asselbergs  1 Yiran GuoErik P A van IperenSuthesh SivapalaratnamVinicius TraganteMatthew B LanktreeLeslie A LangeBerta AlmogueraYolande E AppelmanJohn BarnardJens BaumertAmber L BeitelsheesTushar R BhangaleYii-Der Ida ChenTom R GauntYan GongJemma C HopewellToby JohnsonMarcus E KleberTaimour Y LangaeeMingyao LiYun R LiKiang LiuCaitrin W McDonoughMatthijs F L MeijsRita P S MiddelbergKiran MusunuruChristopher P NelsonJeffery R O'ConnellSandosh PadmanabhanJames S PankowNathan PankratzSuzanne RafeltRamakrishnan RajagopalanSimon P R RomaineNicholas J SchorkJonathan ShafferHaiqing ShenErin N SmithSam E TischfieldPeter J van der MostJana V van Vliet-OstaptchoukNiek VerweijKelly A VolcikLi ZhangKent R BaileyKristian M BaileyFlorianne BauerJolanda M A BoerPeter S BraundAmber BurtPaul R BurtonSarah G BuxbaumWei ChenRhonda M Cooper-DehoffL Adrienne CupplesJonas S deJongChristian DellesDavid DugganMyriam FornageClement E FurlongNicole GlazerJohn G GumsClaire HastieMichael V HolmesThomas IlligSusan A KirklandMika KivimakiRonald KleinBarbara E KleinCharles KooperbergKandice Kottke-MarchantMeena KumariAndrea Z LaCroixLaya MallelaGurunathan MurugesanJose OrdovasWillem H OuwehandWendy S PostRicha SaxenaHubert ScharnaglPamela J SchreinerTina ShahDenis C ShieldsDaichi ShimboSathanur R SrinivasanRonald P StolkDaniel I SwerdlowHerman A Taylor JrEric J TopolElina ToskalaJoost L van PeltJessica van SettenSalim YusufJohn C WhittakerA H ZwindermanLifeLines Cohort StudySonia S AnandAnthony J BalmforthGerald S BerensonConnie R BezzinaBernhard O BoehmEric BoerwinkleJuan P CasasMark J CaulfieldRobert ClarkeJohn M ConnellKaren J CruickshanksKarina W DavidsonIan N M DayPaul I W de BakkerPieter A DoevendansAnna F DominiczakAlistair S HallCatharina A HartmanChristian HengstenbergHans L HillegeMarten H HofkerSteve E HumphriesGail P JarvikJulie A JohnsonBernhard M KaessSekar KathiresanWolfgang KoenigDebbie A LawlorWinfried MärzOlle MelanderBraxton D MitchellGrant W MontgomeryPatricia B MunroeSarah S MurrayStephen J NewhouseN Charlotte Onland-MoretNeil PoulterBruce PsatySusan RedlineStephen S RichJerome I RotterHeribert SchunkertPeter SeverAlan R ShuldinerRoy L SilversteinAlice StantonBarbara ThorandMieke D TripMichael Y TsaiPim van der HarstEllen van der SchootYvonne T van der SchouwW M Monique VerschurenHugh WatkinsArthur A M WildeBruce H R WolffenbuttelJohn B WhitfieldG Kees HovinghChristie M BallantyneCisca WijmengaMuredach P ReillyNicholas G MartinJames G WilsonDaniel J RaderNilesh J SamaniAlex P ReinerRobert A HegeleJohn J P KasteleinAroon D HingoraniPhilippa J TalmudHakon HakonarsonClara C ElbersBrendan J KeatingFotios Drenos
Collaborators, Affiliations
Meta-Analysis

Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci

Folkert W Asselbergs et al. Am J Hum Genet. .

Abstract

Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering ∼2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Summary of the Design Used and the Number of Individuals Involved and p Value Thresholds Used in Each Step
Figure 2
Figure 2
Manhattan Plots for HDL-C, LDL-C, TC, and TG Data from the IBC Lipid Meta-analysis Show p Values Based on Those Obtained from the METAL Meta-analysis
Figure 3
Figure 3
Venn Diagram per Phenotype for the Comparison of the Three Models Used Model 1 corrects only for population stratification; model 2 corrects for population stratification, age, and lipid medication; and model 3 corrects for population stratification, age, T2D, smoking, BMI, and lipid medication. Only signals with p < 2.4 × 10−6 are included.

References

    1. Lopez A.D., Mathers C.D., Ezzati M., Jamison D.T., Murray C.J. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet. 2006;367:1747–1757. - PubMed
    1. Berenson G.S., Srinivasan S.R., Bao W., Newman W.P., 3rd, Tracy R.E., Wattigney W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998;338:1650–1656. - PubMed
    1. Arsenault B.J., Boekholdt S.M., Kastelein J.J. Lipid parameters for measuring risk of cardiovascular disease. Nat Rev Cardiol. 2011;8:197–206. - PubMed
    1. Di Angelantonio E., Sarwar N., Perry P., Kaptoge S., Ray K.K., Thompson A., Wood A.M., Lewington S., Sattar N., Packard C.J., Emerging Risk Factors Collaboration Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000. - PMC - PubMed
    1. Weiss L.A., Pan L., Abney M., Ober C. The sex-specific genetic architecture of quantitative traits in humans. Nat. Genet. 2006;38:218–222. - PubMed

Publication types

Grants and funding