Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb 5;508(2):225-33.
doi: 10.1016/0006-8993(90)90400-6.

Involvement of amygdala pathways in the influence of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory storage

Affiliations

Involvement of amygdala pathways in the influence of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory storage

K C Liang et al. Brain Res. .

Abstract

These experiments examined the role of two major amygdala afferent-efferent pathways--the stria terminalis (ST) and the ventral amygdalofugal pathway (VAF)--in mediating the effects, on memory storage, of post-training intra-amygdala injections of norepinephrine (NE) and subcutaneous (s.c.) injections of epinephrine (E). Rats with either ST lesions or VAF transections and sham-operated rats were trained on a one-trial step-through inhibitory avoidance task and immediately after training received intra-amygdala injections of NE or a buffer solution. Other groups of VAF-transected animals received post-training s.c. injections of E or saline. ST lesions blocked the memory-enhancing effect of intra-amygdala injections of a low dose of NE (0.2 microgram) as well as the amnestic effect of a high dose of NE (5.0 microgram). In contrast, VAF transections did not block the memory-enhancing effect of NE (0.2 microgram). However, VAF transections attenuated the memory-enhancing effect of s.c. injections of E: the effective dose of E was shifted from 0.1 to 0.5 mg/kg. These findings, considered together with previous evidence that ST lesions block the memory-enhancing effect of peripheral E injections, suggest that the VAF is involved in mediating the central influence of peripheral E on amygdala functioning, while the ST is involved in mediating amygdala influences on memory storage elsewhere in the brain.

PubMed Disclaimer

Publication types

LinkOut - more resources