Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e47324.
doi: 10.1371/journal.pone.0047324. Epub 2012 Oct 10.

The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation

Affiliations

The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation

Yongshuo H Fu et al. PLoS One. 2012.

Abstract

Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Frequency distribution of budburst dates of the experimental trees for the three studied species.
Frequency distribution of budburst dates of the experimental trees for the three studied species. The number of saplings for a given budburst date is presented on the Y-axis. The small photos on the upper right part of each panel visually show the stage of leaf development when we considered budburst to have occurred.
Figure 2
Figure 2. Budburst response to different warming treatments.
Budburst response to different warming treatments: W0S0: no warming; W6S6: winter and spring warming; W6S0: winter warming only, and W0S6: spring warming only (winter is from December 1 2009 to February 22 2010 and spring from February 22 to budburst date). The delta temperature was calculated as the average difference between treatments and outside controls from December 1st to the day of observed budburst for three warming treatments. Because the period with warming in spring was shorter than the period with warming in winter, the W0S6 treatment experienced less warming on average than the W6S0 treatment. Especially for birch, the earliest flushing species, this difference was pronounced. The different letter close to the symbols denote a significant difference (at P<0.05) among treatments for each species, separately.
Figure 3
Figure 3. Comparison of the observed budburst dates with the predicted values for five models.
Comparison of the observed budburst dates with the predicted values for five models fitted on the whole observation dataset. Data are for three species. The diagonal line is the 1∶1 line, whereas RMSE is the Root Mean Square Error.
Figure 4
Figure 4. Modeled against observed budburst dates for different warming treatments.
Modeled against observed budburst dates for different warming treatments (W0S0: no warming; W6S6: winter and spring warming; W6S0: winter warming only, and W0S6: spring warming only; winter is from December 1 2009 to February 22 2010 and spring from February 22 to budburst date) when using the Sequential model and the Thermal time model for each species. The models were fitted on the whole observation dataset. The observed budburst dates are represented by open symbols and the predicted budburst dates are represented by solid symbols.

References

    1. Baldocchi D, Wilson K (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling 142: 155–184.
    1. Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 49–U43. - PubMed
    1. Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. Journal of the Torrey Botanical Society 135: 126–146.
    1. Chuine I (2010) Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B-Biological Sciences 365: 3149–3160. - PMC - PubMed
    1. Dijkstra JA, Westerman EL, Harris LG (2011) The effects of climate change on species composition, succession and phenology: a case study. Global Change Biology 17: 2360–2369.

Publication types

LinkOut - more resources