Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;67(1):1-9.
doi: 10.1016/j.phrs.2012.10.004. Epub 2012 Oct 13.

Fingolimod protects cultured cortical neurons against excitotoxic death

Affiliations

Fingolimod protects cultured cortical neurons against excitotoxic death

Luisa Di Menna et al. Pharmacol Res. 2013 Jan.

Abstract

Fingolimod (FTY720), a novel drug approved for the treatment of relapsing-remitting multiple sclerosis, activates different sphingosine-1-phosphate receptor (S1PR) subtypes. Its primary mechanism of action is to reduce the egress of T lymphocytes from secondary lymphoid organs, thus restraining neuroinflammation and autoimmunity. However, recent evidence suggests that the action of FTY720 involves S1PRs expressed by cells resident in the CNS, including neurons. Here, we examined the effect of FTY720, its active metabolite, FTY720-P, and sphingosine-1-phosphate (S1P) on neuronal viability using a classical in vitro model of excitotoxic neuronal death. Mixed cultures of mouse cortical cells were challenged with toxic concentrations of N-methyl-d-aspartate (NMDA) for 10 min, and neuronal death was assessed 20 h later. FTY720, FTY720-P, and S1P were all neuroprotective when applied 18-20 h prior to the NMDA pulse. Neuroprotection was attenuated by pertussis toxin, and inhibited by the selective type-1 S1PR (S1P1R) antagonist, W146, and by inhibitors of the mitogen associated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PtdIns-3-K) pathways. Both FTY720 and FTY720-P retained their protective activity in pure cultures of mouse or rat cortical neurons. These data offer the first direct demonstration that FTY720 and its active metabolite protect neurons against excitotoxic death.

PubMed Disclaimer