Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct 18;44(5):659-65.

Molecular mechanisms of osteoblast-specific transcription factor Osterix effect on bone formation

Affiliations
  • PMID: 23073571
Free article
Review

Molecular mechanisms of osteoblast-specific transcription factor Osterix effect on bone formation

Chi Zhang. Beijing Da Xue Xue Bao Yi Xue Ban. .
Free article

Abstract

Bone formation is a complex developmental process involving the differentiation of mesenchymal stem cells to osteoblasts. Osteoblast commitment and differentiation are controlled through a multistep molecular pathway regulated by different transcription factors and signaling proteins, including Indian hedgehog, Runx2, Osterix (Osx), and Wnt pathway. Osx is an osteoblast-specific transcription factor required for bone formation. Osx was first discovered as a bone morphogenetic protein-2 inducible gene in mesenchymal stem cells. Osx knock-out mice lack bone completely, and cartilage is normal. This opens a new window to the whole field of how bone forms. The discovery that Osx inhibits Wnt pathway highlights the potential for novel feedback control mechanisms involved in bone formation. Several downstream targets of Osx during bone formation have been identified, including Satb2, vitamin D receptor and vascular endothelial growth factor as well as Dkk1 and Sost. The delineation of the cascade of events leading to bone formation should provide a molecular basis for the development of new and specific anabolic therapeutic agents for bone deficit conditions, such as osteoporosis and osteonecrosis. This review summarizes the recent advances in understanding the molecular mechanisms of Osx effect on bone formation. Studies since the Osx discovery have provided convincing evidences to demonstrate that Osx is the master gene that controls osteoblast lineage commitment and the subsequent osteoblast differentiation and proliferation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources