Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Nov 26;55(22):9576-88.
doi: 10.1021/jm300845v. Epub 2012 Nov 1.

N-substituted phenoxazine and acridone derivatives: structure-activity relationships of potent P2X4 receptor antagonists

Affiliations
Comparative Study

N-substituted phenoxazine and acridone derivatives: structure-activity relationships of potent P2X4 receptor antagonists

Victor Hernandez-Olmos et al. J Med Chem. .

Abstract

P2X4 receptor antagonists have potential as drugs for the treatment of neuropathic pain and neurodegenerative diseases. In the present study the discovery of phenoxazine derivatives as potent P2X4 antagonists is described. N-Substituted phenoxazine and related acridone and benzoxazine derivatives were synthesized and optimized with regard to their potency to inhibit ATP-induced calcium influx in 1321N1 astrocytoma cells stably transfected with the human P2X4 receptor. In addition, species selectivity (rat, mouse, human) and receptor subtype selectivity (versus P2X1,2,3,7) were investigated. The most potent P2X4 antagonist of the present series was N-(benzyloxycarbonyl)phenoxazine (26, PSB-12054) with an IC(50) of 0.189 μM and good selectivity versus the other human P2X receptor subtypes. N-(p-Methylphenylsulfonyl)phenoxazine (21, PSB-12062) was identified as a selective P2X4 antagonist that was equally potent in all three species (IC(50): 0.928-1.76 μM). The compounds showed an allosteric mechanism of action. The present study represents the first structure-activity relationship analysis of P2X4 antagonists.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources