Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct 21;137(15):154903.
doi: 10.1063/1.4758454.

Nucleation of colloids and macromolecules in a finite volume

Affiliations

Nucleation of colloids and macromolecules in a finite volume

James F Lutsko. J Chem Phys. .

Abstract

A recently formulated description of homogeneous nucleation for Brownian particles in the over-damped limit based on fluctuating hydrodynamics is used to determine the nucleation pathway, characterized as the most likely path (MLP), for the nucleation of a dense-concentration droplet of globular protein from a dilute solution in a small, finite container. The calculations are performed by directly discretizing the equations for the MLP and it is found that they confirm previous results obtained for infinite systems: the process of homogeneous nucleation begins with a long-wavelength, spatially-extended concentration fluctuation that condenses to form the pre-critical cluster. This is followed by a classical growth processes. The calculations show that the post-critical growth involves the formation of a depletion zone around the cluster whereas no such depletion is observed in the pre-critical cluster. The approach therefore captures dynamical effects not found in classical density functional theory studies while consistently describing the formation of the pre-critical cluster.

PubMed Disclaimer

LinkOut - more resources