Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system
- PMID: 23085513
- DOI: 10.1016/j.freeradbiomed.2012.10.539
Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system
Abstract
The Na(+)-K(+) pump is an essential heterodimeric membrane protein, which maintains electrochemical gradients for Na(+) and K(+) across cell membranes in all tissues. We have identified glutathionylation, a reversible posttranslational redox modification, of the Na(+)-K(+) pump's β1 subunit as a regulatory mechanism of pump activity. Oxidative inhibition of the Na(+)-K(+) pump by angiotensin II- and β1-adrenergic receptor-coupled signaling via NADPH oxidase activation demonstrates the relevance of this regulatory mechanism in cardiovascular physiology and pathophysiology. This has implications for dysregulation of intracellular Na(+) and Ca(2+) as well as increased oxidative stress in heart failure, myocardial ischemia-reperfusion, and regulation of vascular tone under conditions of elevated oxidative stress. Treatment strategies that are able to reverse this oxidative inhibition of the Na(+)-K(+) pump have the potential for cardiovascular-protective effects.
Keywords: Free radicals; Glutaredoxin; Glutathionylation; NADPH oxidase; Na(+)–K(+) pump.
Copyright © 2012 Elsevier Inc. All rights reserved.
Similar articles
-
Redox-dependent regulation of the Na⁺-K⁺ pump: new twists to an old target for treatment of heart failure.J Mol Cell Cardiol. 2013 Aug;61:94-101. doi: 10.1016/j.yjmcc.2013.05.013. Epub 2013 May 30. J Mol Cell Cardiol. 2013. PMID: 23727392 Review.
-
Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.Free Radic Biol Med. 2013 Dec;65:563-572. doi: 10.1016/j.freeradbiomed.2013.06.040. Epub 2013 Jun 28. Free Radic Biol Med. 2013. PMID: 23816524 Free PMC article.
-
Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.Circ Res. 2009 Jul 17;105(2):185-93. doi: 10.1161/CIRCRESAHA.109.199547. Epub 2009 Jun 18. Circ Res. 2009. PMID: 19542013
-
Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology.Trends Cardiovasc Med. 2010 Apr;20(3):85-90. doi: 10.1016/j.tcm.2010.06.002. Trends Cardiovasc Med. 2010. PMID: 21130951 Review.
-
Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump.J Biol Chem. 2012 Apr 6;287(15):12353-64. doi: 10.1074/jbc.M112.340893. Epub 2012 Feb 21. J Biol Chem. 2012. PMID: 22354969 Free PMC article.
Cited by
-
Lipoxin a4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats.Mediators Inflamm. 2013;2013:231351. doi: 10.1155/2013/231351. Epub 2013 Jul 17. Mediators Inflamm. 2013. PMID: 23956501 Free PMC article.
-
Targeting Na/K-ATPase Signaling: A New Approach to Control Oxidative Stress.Curr Pharm Des. 2018;24(3):359-364. doi: 10.2174/1381612824666180110101052. Curr Pharm Des. 2018. PMID: 29318961 Free PMC article. Review.
-
Role of Na+-K+ ATPase Alterations in the Development of Heart Failure.Int J Mol Sci. 2024 Oct 8;25(19):10807. doi: 10.3390/ijms251910807. Int J Mol Sci. 2024. PMID: 39409137 Free PMC article. Review.
-
Novel study on N-nitrosamines as risk factors of cardiovascular diseases.Biomed Res Int. 2014;2014:817019. doi: 10.1155/2014/817019. Epub 2014 Aug 27. Biomed Res Int. 2014. PMID: 25243185 Free PMC article.
-
Safety assessment of titanium dioxide (E171) as a food additive.EFSA J. 2021 May 6;19(5):e06585. doi: 10.2903/j.efsa.2021.6585. eCollection 2021 May. EFSA J. 2021. PMID: 33976718 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous