Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 30;31(30):4382-400.
doi: 10.1002/sim.5643. Epub 2012 Oct 22.

Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder

Affiliations

Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder

E J Williamson et al. Stat Med. .

Abstract

We consider the estimation of the causal effect of a binary exposure on a continuous outcome. Confounding and missing data are both likely to occur in practice when observational data are used to estimate this causal effect. In dealing with each of these problems, model misspecification is likely to introduce bias. We present augmented inverse probability weighted (AIPW) estimators that account for both confounding and missing data, with the latter occurring in a single variable only. These estimators have an element of robustness to misspecification of the models used. Our estimators require two models to be specified to deal with confounding and two to deal with missing data. Only one of each of these models needs to be correctly specified. When either the outcome or the exposure of interest is missing, we derive explicit expressions for the AIPW estimator. When a confounder is missing, explicit derivation is complex, so we use a simple algorithm, which can be applied using standard statistical software, to obtain an approximation to the AIPW estimator.

PubMed Disclaimer

Similar articles

Cited by

Publication types