Polyomavirus JC infection inhibits differentiation of oligodendrocyte progenitor cells
- PMID: 23086711
- PMCID: PMC4641310
- DOI: 10.1002/jnr.23135
Polyomavirus JC infection inhibits differentiation of oligodendrocyte progenitor cells
Abstract
Reactivation of the human polyomavirus JC (JCV) in the CNS results in a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). The lytic destruction of oligodendrocytes, which occurs at the terminal stage of the viral infection cycle, is considered a critical factor in the development of demyelination and the pathogenesis of PML. However, knowledge is limited about interaction of JCV with oligodendrocytes and its impact on the denudation of axons at the early stage of viral reactivation and prior to the destruction of the infected cells. We have developed an in vitro neuroprogenitor cell culture using human fetal brain that can be differentiated to the oligodendrocyte lineage to investigate interactions of JCV with its host cells. Results show that infection with JCV delays oligodendrocyte maturation as shown by reduced levels of oligodendrocytic markers, including myelin basic protein, proteolipid protein, and platelet-derived growth factor receptor-α. Furthermore, replication of JCV in these cells caused substantial dysregulation of several chemokines, including CCL5/RANTES, GRO, CXCL1/GROα, CXCL16, CXCL8/IL-8, CXCL5/ENA-78, and CXCL10/IP-10, all of which play a role in cell growth and differentiation.
Copyright © 2012 Wiley Periodicals, Inc.
Figures





References
-
- Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT. The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harbor Symp Quant Biol. 2008;73:357–365. - PubMed
-
- Bajetto A, Bonavia R, Barbero S, Schettini G. Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem. 2002;82:1311–1329. - PubMed
-
- Bartosik-Psujek H, Stelmasiak Z. The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. Eur J Neurol. 2005;12:49–54. - PubMed
-
- Berger JR. Progressive multifocal leukoencephalopathy and newer biological agents. Drug Saf. 2010;33:969–983. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources