Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease
- PMID: 23086948
- PMCID: PMC3624453
- DOI: 10.1074/jbc.R112.410530
Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease
Abstract
The most distinguishing feature of neurons is their capacity for regenerative electrical activity. This activity imposes a significant mitochondrial burden, especially in neurons that are autonomously active, have broad action potentials, and exhibit prominent Ca(2+) entry. Many of the genetic mutations and toxins associated with Parkinson's disease compromise mitochondrial function, providing a mechanistic explanation for the pattern of neuronal pathology in this disease. Because much of the neuronal mitochondrial burden can be traced to L-type voltage-dependent channels (channels for which there are brain-penetrant antagonists approved for human use), a neuroprotective strategy to reduce this burden is available.
Similar articles
-
Physiological phenotype and vulnerability in Parkinson's disease.Cold Spring Harb Perspect Med. 2012 Jul;2(7):a009290. doi: 10.1101/cshperspect.a009290. Cold Spring Harb Perspect Med. 2012. PMID: 22762023 Free PMC article. Review.
-
What causes the death of dopaminergic neurons in Parkinson's disease?Prog Brain Res. 2010;183:59-77. doi: 10.1016/S0079-6123(10)83004-3. Prog Brain Res. 2010. PMID: 20696315
-
Parkinson's disease is associated with altered expression of CaV1 channels and calcium-binding proteins.Brain. 2013 Jul;136(Pt 7):2077-97. doi: 10.1093/brain/awt134. Epub 2013 Jun 14. Brain. 2013. PMID: 23771339
-
The pathology roadmap in Parkinson disease.Prion. 2013 Jan-Feb;7(1):85-91. doi: 10.4161/pri.23582. Epub 2013 Jan 1. Prion. 2013. PMID: 23324593 Free PMC article. Review.
-
The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson's disease.Neurobiol Dis. 2013 Mar;51:43-55. doi: 10.1016/j.nbd.2012.05.015. Epub 2012 Jun 2. Neurobiol Dis. 2013. PMID: 22668779 Free PMC article. Review.
Cited by
-
Calcium, Bioenergetics, and Parkinson's Disease.Cells. 2020 Sep 8;9(9):2045. doi: 10.3390/cells9092045. Cells. 2020. PMID: 32911641 Free PMC article. Review.
-
"Metal elements and pesticides as risk factors for Parkinson's disease - A review".Toxicol Rep. 2021 Mar 10;8:607-616. doi: 10.1016/j.toxrep.2021.03.009. eCollection 2021. Toxicol Rep. 2021. PMID: 33816123 Free PMC article. Review.
-
Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1.2 channels.Channels (Austin). 2016 Sep 2;10(5):379-394. doi: 10.1080/19336950.2016.1180489. Epub 2016 Apr 26. Channels (Austin). 2016. PMID: 27115600 Free PMC article.
-
CaV1.3 L-Type Calcium Channels Increase the Vulnerability of Substantia Nigra Dopaminergic Neurons in MPTP Mouse Model of Parkinson's Disease.Front Aging Neurosci. 2020 Jan 17;11:382. doi: 10.3389/fnagi.2019.00382. eCollection 2019. Front Aging Neurosci. 2020. PMID: 32009942 Free PMC article.
-
Parkinson's Disease, the Dopaminergic Neuron and Gammahydroxybutyrate.Neurol Ther. 2018 Jun;7(1):5-11. doi: 10.1007/s40120-018-0091-2. Epub 2018 Jan 24. Neurol Ther. 2018. PMID: 29368093 Free PMC article.
References
-
- Braak H., Ghebremedhin E., Rüb U., Bratzke H., Del Tredici K. (2004) Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318, 121–134 - PubMed
-
- Augustine G. J., Santamaria F., Tanaka K. (2003) Local calcium signaling in neurons. Neuron 40, 331–346 - PubMed
-
- Clapham D. E. (2007) Calcium signaling. Cell 131, 1047–1058 - PubMed
-
- Decuypere J.-P., Bultynck G., Parys J. B. (2011) A dual role for Ca2+ in autophagy regulation. Cell Calcium 50, 242–250 - PubMed
-
- Lloyd-Evans E., Platt F. M. (2011) Lysosomal Ca2+ homeostasis: role in pathogenesis of lysosomal storage diseases. Cell Calcium 50, 200–205 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous