Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 1;2(3):129-136.
doi: 10.4161/spmg.21780.

Development of sexual dimorphism in the Drosophila testis

Affiliations

Development of sexual dimorphism in the Drosophila testis

Cale Whitworth et al. Spermatogenesis. .

Abstract

The creation of sexual dimorphism in the gonads is essential for producing the male and female gametes required for sexual reproduction. Sexual development of the gonads involves both somatic cells and germ cells, which often undergo sex determination by different mechanisms. While many sex-specific characteristics evolve rapidly and are very different between animal species, gonad function and the formation of sperm and eggs appear more similar and may be more conserved. Consistent with this, the doublesex/mab3 Related Transcription factors (DMRTs) are important for gonad sexual dimorphism in a wide range of animals, including flies, worms and mammals. Here we explore how sexual dimorphism is regulated in the Drosophila gonad, focusing on recent discoveries relating to testis development. We will discuss how sex determination in both the germline and the soma are utilized to create a testis, including the role of the key somatic sex determination factor doublesex.

PubMed Disclaimer

Figures

None
Figure 1. A summary of testis development in Drosophila.
None
Figure 2. A simplified view of sex determination in the somatic gonad and germline.

Similar articles

Cited by

References

    1. Jemc JC. Somatic gonadal cells: the supporting cast for the germline. Genesis. 2011;49:753–75. doi: 10.1002/dvg.20784. - DOI - PubMed
    1. Brookman JJ, Toosy AT, Shashidhara LS, White RA. The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development. 1992;116:1185–92. - PubMed
    1. Riechmann V, Rehorn KP, Reuter R, Leptin M. The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development. 1998;125:713–23. - PubMed
    1. Moore LA, Broihier HT, Van Doren M, Lehmann R. Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila. Development. 1998;125:837–44. - PubMed
    1. Boyle M, Bonini N, DiNardo S. Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development. 1997;124:971–82. - PubMed

LinkOut - more resources