Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e47198.
doi: 10.1371/journal.pone.0047198. Epub 2012 Oct 17.

Cognition in males and females with autism: similarities and differences

Collaborators, Affiliations

Cognition in males and females with autism: similarities and differences

Meng-Chuan Lai et al. PLoS One. 2012.

Abstract

The male bias in autism spectrum conditions (ASC) has led to females with ASC being under-researched. This lack of attention to females could hide variability due to sex that may explain some of the heterogeneity within ASC. In this study we investigate four key cognitive domains (mentalizing and emotion perception, executive function, perceptual attention to detail, and motor function) in ASC, to test for similarities and differences between males and females with and without ASC (n = 128 adults; n = 32 per group). In the mentalizing and facial emotion perception domain, males and females with ASC showed similar deficits compared to neurotypical controls. However, in attention to detail and dexterity involving executive function, although males with ASC showed poorer performance relative to neurotypical males, females with ASC performed comparably to neurotypical females. We conclude that performance in the social-cognitive domain is equally impaired in male and female adults with ASC. However, in specific non-social cognitive domains, performance within ASC depends on sex. This suggests that in specific domains, cognitive profiles in ASC are modulated by sex.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Eyes Test and KDEF Test performance.
These line graphs show the performance on the Eyes Test and KDEF Test for the four groups. The graphs illustrate significant main effects of diagnosis across all outcome measures (A: Eyes Test correct score; B-H: log-transformed aaRT for KDEF Test emotion faces of happy, sad, angry, fear, disgusted, surprised and neutral faces) and a lack of a sex-by-diagnosis interaction. The y-axis plots the mean of standardized residual (i.e., after adjusted for all covariates in the model) ±1 standard error. The x-axis designates diagnostic group with the neurotypical control group on the left and ASC group on the right. Separate lines indicate males and female groups (males, blue; females, red).
Figure 2
Figure 2. KDEF Test emotion-by-diagnosis interaction.
Panel A shows the raw reaction times across all seven emotion faces for the neurotypical control group (left graph) and the ASC group (right graph). For both groups, fear (4th bars) required the longest time to identify, and happy (1st bars) the shortest. Error bars indicate (within-group) standard error of the mean. Panel B indicates that the ASC groups (purple line) required an even longer time than the control groups (green) to identify fear compared to all other emotion faces. There was no sex difference in this emotion-by-diagnosis interaction, so males and females are illustrated together.
Figure 3
Figure 3. Go/No-Go task performance.
The line graphs illustrate the main effect of diagnosis across outcome variables (A, B: rank-transformed commission and omission errors, the higher the more error; C: log-transformed RT for ‘go’ response; D: sensitivity d’ derived from SDT). There were no sex-by-diagnosis interactions. Convention of the graphs is the same as that in Figure 1.
Figure 4
Figure 4. EFT and Purdue Pegboard Test assembly performances.
Both EFT RT for all items (reflecting mainly accuracy, panel A) and assembly subtest score in the Purdue Pegboard Test (panel C) showed a significant interaction between sex and diagnosis. Males with ASC on average performed worse than neurotypical males, but females with ASC performed equally well as neurotypical females. EFT RT for correct items (reflecting purely processing speed, panel B) showed only a main effect of sex that overall females were on average slower than males. Convention of the graphs is the same as that in Figure 1.

References

    1. Fombonne E (2005) Epidemiological studies of pervasive developmental disorder. In: Volkmar F, Paul R, Klin A, Cohen D, editors. Handbook of Autism and Pervasive Developmental Disorders. Hoboken, NJ: Wiley. 42–69.
    1. Attwood T (2006) The pattern of abilities and development of girls with Asperger’s syndrome. Asperger’s and girls. Arlington, TX: Future Horisons, Inc.
    1. Kopp S, Gillberg C (1992) Girls with social deficits and learning problems: Autism, atypical Asperger syndrome or a variant of these conditions. European Child & Adolescent Psychiatry 1: 89–99. - PubMed
    1. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, et al. (2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 9: e1001081. - PMC - PubMed
    1. Kopp S, Gillberg C (2011) The Autism Spectrum Screening Questionnaire (ASSQ)-Revised Extended Version (ASSQ-REV): An instrument for better capturing the autism phenotype in girls? A preliminary study involving 191 clinical cases and community controls. Res Dev Disabil 32: 2875–2888. - PubMed

Publication types