Trypanosome diversity in wildlife species from the serengeti and Luangwa Valley ecosystems
- PMID: 23094115
- PMCID: PMC3475651
- DOI: 10.1371/journal.pntd.0001828
Trypanosome diversity in wildlife species from the serengeti and Luangwa Valley ecosystems
Abstract
Background: The importance of wildlife as reservoirs of African trypanosomes pathogenic to man and livestock is well recognised. While new species of trypanosomes and their variants have been identified in tsetse populations, our knowledge of trypanosome species that are circulating in wildlife populations and their genetic diversity is limited.
Methodology/principal findings: molecular phylogenetic methods were used to examine the genetic diversity and species composition of trypanosomes circulating in wildlife from two ecosystems that exhibit high host species diversity: the Serengeti in Tanzania and the Luangwa Valley in Zambia. Phylogenetic relationships were assessed by alignment of partial 18S, 5.8S and 28S trypanosomal nuclear ribosomal DNA array sequences within the Trypanosomatidae and using ITS1, 5.8S and ITS2 for more detailed analysis of the T. vivax clade. In addition to Trypanosoma brucei, T. congolense, T. simiae, T. simiae (Tsavo), T. godfreyi and T. theileri, three variants of T. vivax were identified from three different wildlife species within one ecosystem, including sequences from trypanosomes from a giraffe and a waterbuck that differed from all published sequences and from each other, and did not amplify with conventional primers for T. vivax.
Conclusions/significance: Wildlife carries a wide range of trypanosome species. The failure of the diverse T. vivax in this study to amplify with conventional primers suggests that T. vivax may have been under-diagnosed in Tanzania. Since conventional species-specific primers may not amplify all trypanosomes of interest, the use of ITS PCR primers followed by sequencing is a valuable approach to investigate diversity of trypanosome infections in wildlife; amplification of sequences outside the T. brucei clade raises concerns regarding ITS primer specificity for wildlife samples if sequence confirmation is not also undertaken.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Adams ER, Hamilton PB, Gibson WC (2010) African trypanosomes: celebrating diversity. Trends in Parasitology 26: 324–328. - PubMed
-
- Majiwa PAO, Maina M, Waitumbi JN, Mihok S, Zweygarth E (1993) Trypanosoma (Nannomonas) congolense - molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106: 151–162. - PubMed
-
- McNamara JJ, Mohammed G, Gibson WC (1994) Trypanosoma (Nannomonas) godfreyi sp. nov. from tsetse flies in the Gambia - biological and biochemical characterization. Parasitology 109: 497–509. - PubMed
-
- Malele I, Craske L, Knight C, Ferris V, Njiru ZK, et al. (2003) The use of specific and generic primers to identify trypanosome infections of wild tsetse flies in Tanzania by PCR. Infection, Genetics and Evolution 3: 271–279. - PubMed
-
- Hamilton PB, Adams ER, Malele II, Gibson WC (2008) A novel, high-throughput technique for species identification reveals a new species of tsetse-transmitted trypanosome related to the Trypanosoma brucei subgenus, Trypanozoon. Infection Genetics and Evolution 8: 26–33. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
