X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts
- PMID: 23101511
- DOI: 10.5483/bmbrep.2012.45.10.101
X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts
Abstract
Radiotherapy is considered to cause detrimental effects on bone tissue eventually increasing bone loss and fracture risk. However, there is a great controversy on the real effects of irradiation itself on osteoblasts, and the mechanisms by which irradiation affects osteoblast differentiation and mineralization are not completely understood. We explored how X-ray radiation influences differentiation and bone-specific gene expression in mouse calvarial osteoblasts. Irradiation at 2 Gy not only increased differentiation and mineralization of the cells, but also upregulated the expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin at early stages of differentiation. However, irradiation at higher doses (>2 Gy) did not stimulate osteoblast differentiation, rather it suppressed DNA synthesis by the cells without a toxic effect. Additional experiments suggested that transforming growth factor-beta 1 and runt-transcription factor 2 play important roles in irradiation- stimulated bone differentiation by acting as upstream regulators of bone-specific markers.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
