Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;34(3):735-45.
doi: 10.1016/j.biomaterials.2012.10.016. Epub 2012 Oct 30.

Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration

Affiliations

Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration

Wei Ji et al. Biomaterials. 2013 Jan.

Abstract

The goal of this work was to evaluate the effect of membrane functionalization with a chemotactic factor on cell recruitment and bone formation in order to develop a bioactive membrane for guided bone regeneration (GBR) applications. To this end, GBR membranes were prepared by electrospinning using poly(ε-caprolactone) (PCL) blended with type B-gelatin, and functionalized with stromal cell derived factor-1α (SDF-1α) via physical adsorption. Firstly, the obtained membranes were evaluated in vitro for SDF-1α release and chemotactic effect on bone marrow stromal cells (BMSCs). Subsequently, in vivo BMSCs recruitment and bone regeneration in response to SDF-1α loaded PCL/gelatin electrospun membranes were assessed in rat cranial defects. The results showed that PCL/gelatin electrospun membranes provided a diffusion-controlled SDF-1α release profile. Furthermore, the membranes loaded with different amounts of SDF-1α (50-400 ng) significantly induced stimulated chemotactic migration of BMSCs in vitro without dose-dependent effects. Eight weeks after implantation in rat cranial defects, SDF-1α loaded membranes yielded a 6-fold increase in the amount of bone formation compared to the bare membranes, albeit that contribution of in vivo BMSCs recruitment to the bone regeneration could not be ascertained. In conclusion, the results of current study indicate the potential for using SDF-1α loaded PCL/gelatin electrospun membrane as a bioactive membrane, which is beneficial for optimizing clinical application of GBR strategies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources