Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar;18(1):34-46.
doi: 10.2478/s11658-012-0038-z. Epub 2012 Nov 3.

microRNAs: fine tuning of erythropoiesis

Affiliations
Review

microRNAs: fine tuning of erythropoiesis

Marcin A Listowski et al. Cell Mol Biol Lett. 2013 Mar.

Abstract

Cell proliferation and differentiation is a complex process involving many cellular mechanisms. One of the best-studied phenomena in cell differentiation is erythrocyte development during hematopoiesis in vertebrates. In recent years, a new class of small, endogenous, non-coding RNAs called microRNAs (miRNAs) emerged as important regulators of gene expression at the post-transcriptional level. Thousands of miRNAs have been identified in various organisms, including protozoa, fungi, bacteria and viruses, proving that the regulatory miRNA pathway is conserved in evolution. There are many examples of miRNA-mediated regulation of gene expression in the processes of cell proliferation, differentiation and apoptosis, and in cancer genesis. Many of the collected data clearly show the dependence of the proteome of a cell on the qualitative and quantitative composition of endogenous miRNAs. Numerous specific miRNAs are present in the hematopoietic erythroid line. This review attempts to summarize the state of knowledge on the role of miRNAs in the regulation of different stages of erythropoiesis. Original experimental data and results obtained with bioinformatics tools were combined to elucidate the currently known regulatory network of miRNAs that guide the process of differentiation of red blood cells.

PubMed Disclaimer

References

    1. http://www.mirbase.org
    1. Azzouzi I., Moest H., Winkler J., Fauchere J.C., Gerber A.P., Wollscheid B., Stoffel M., Schmugge M., Speer O. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis. PLoS One. 2011;6:e22838. doi: 10.1371/journal.pone.0022838. - DOI - PMC - PubMed
    1. Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA. 2007;104:9667–9672. doi: 10.1073/pnas.0703820104. - DOI - PMC - PubMed
    1. Kloosterman W.P., Wienholds E., Ketting R.F., Plasterk R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 2004;32:6284–6291. doi: 10.1093/nar/gkh968. - DOI - PMC - PubMed
    1. Tsai N.P., Lin Y.L., Wei L.N. MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem. J. 2009;424:411–418. doi: 10.1042/BJ20090915. - DOI - PubMed

LinkOut - more resources