Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov 6:9:92.
doi: 10.1186/1742-4690-9-92.

The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus

Affiliations
Review

The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus

Antoinette C van der Kuyl et al. Retrovirology. .

Abstract

Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983-2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold.This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kypr J, Mrazek J. Unusual codon usage of HIV. Nature. 1987;327:20. - PubMed
    1. Kypr J, Mrazek J, Reich J. Nucleotide composition bias and CpG dinucleotide content in the genomes of HIV and HTLV 1/2. Biochim Biophys Acta. 1989;1009:280–282. doi: 10.1016/0167-4781(89)90114-0. - DOI - PubMed
    1. Bronson EC, Anderson JN. Nucleotide composition as a driving force in the evolution of retroviruses. J Mol Evol. 1994;38:506–532. doi: 10.1007/BF00178851. - DOI - PubMed
    1. Berkhout B, van Hemert FJ. The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins. Nucleic Acids Res. 1994;22:1705–1711. doi: 10.1093/nar/22.9.1705. - DOI - PMC - PubMed
    1. van Hemert FJ, Berkhout B. The tendency of lentiviral open reading frames to become A-rich: constraints imposed by viral genome organization and cellular tRNA availability. J Mol Evol. 1995;41:132–140. - PubMed

Publication types

LinkOut - more resources