Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 14;429(3-4):204-9.
doi: 10.1016/j.bbrc.2012.10.104. Epub 2012 Nov 3.

Developmental retardation, microcephaly, and peptiduria in mice without aminopeptidase P1

Affiliations

Developmental retardation, microcephaly, and peptiduria in mice without aminopeptidase P1

Sang Ho Yoon et al. Biochem Biophys Res Commun. .

Abstract

Cytosolic aminopeptidase P1 (APP1) is one of the three known mammalian aminopeptidase Ps (APPs) that cleave the N-terminal amino acid residue of peptides in which the penultimate amino acid is proline. In mammals, many biologically active peptides have a highly conserved N-terminal penultimate proline. However, little is known about the physiological role of APP1. In addition, there is no direct evidence to associate a deficiency in APP1 with metabolic diseases. Although two human subjects with reduced APP activity exhibited peptiduria, it is unclear which of the three APP isoforms is responsible for this disorder. In this study, we generated APP1-deficient mice by knocking out Xpnpep1. Mouse APP1 deficiency causes severe growth retardation, microcephaly, and modest lethality. In addition, imino-oligopeptide excretion was observed in urine samples from APP1-deficient mice. These results suggest an essential role for APP1-mediated peptide metabolism in body and brain development, and indicate a strong causal link between APP1 deficiency and peptiduria.

PubMed Disclaimer

Publication types