Renal microvascular dysfunction, hypertension and CKD progression
- PMID: 23132368
- PMCID: PMC3942995
- DOI: 10.1097/MNH.0b013e32835b36c1
Renal microvascular dysfunction, hypertension and CKD progression
Abstract
Purpose of review: Despite apparent blood pressure (BP) control and renin-angiotensin system (RAS) blockade, the chronic kidney disease (CKD) outcomes have been suboptimal. Accordingly, this review is addressed to renal microvascular and autoregulatory impairments that underlie the enhanced dynamic glomerular BP transmission in CKD progression.
Recent findings: Clinical data suggest that failure to achieve adequate 24-h BP control is likely contributing to the suboptimal outcomes in CKD. Whereas evidence continues to accumulate regarding the importance of preglomerular autoregulatory impairment to the dynamic glomerular BP transmission, emerging data indicate that nitric oxide-mediated efferent vasodilation may play an important role in mitigating the consequences of glomerular hypertension. By contrast, the vasoconstrictor effects of angiotensin II are expected to potentially reduce glomerular barotrauma and possibly enhance ischemic injury. When adequate BP measurement methods are used, the evidence for BP-independent injury initiating mechanisms is considerably weaker and the renoprotection by RAS blockade largely parallels its antihypertensive effectiveness.
Summary: Adequate 24-h BP control presently offers the most feasible intervention for reducing glomerular BP transmission and improving suboptimal outcomes in CKD. Investigations addressed to improving myogenic autoregulation and/or enhancing nitric oxide-mediated efferent dilation in addition to the more downstream mediators may provide additional future therapeutic targets.
Conflict of interest statement
There are no conflicts of interest.
Figures




Similar articles
-
Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury.Am J Physiol Renal Physiol. 2020 Oct 1;319(4):F624-F635. doi: 10.1152/ajprenal.00239.2020. Epub 2020 Aug 24. Am J Physiol Renal Physiol. 2020. PMID: 32830539 Free PMC article.
-
Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats.Clin Exp Hypertens. 2017;39(2):183-195. doi: 10.1080/10641963.2016.1235184. Epub 2017 Mar 1. Clin Exp Hypertens. 2017. PMID: 28287881
-
Pathophysiology of hypertensive renal damage: implications for therapy.Hypertension. 2004 Nov;44(5):595-601. doi: 10.1161/01.HYP.0000145180.38707.84. Epub 2004 Sep 27. Hypertension. 2004. PMID: 15452024 Review.
-
Renal protection in hypertensive patients: selection of antihypertensive therapy.Drugs. 2005;65 Suppl 2:29-39. doi: 10.2165/00003495-200565002-00005. Drugs. 2005. PMID: 16398060 Review.
-
Patients with Hypertensive Nephropathy and Chronic Kidney Disease Might Not Benefit from Strict Blood Pressure Control.Kidney Blood Press Res. 2018;43(6):1706-1715. doi: 10.1159/000495388. Epub 2018 Nov 23. Kidney Blood Press Res. 2018. PMID: 30472714
Cited by
-
Competitive interaction between fibroblast growth factor 23 and asymmetric dimethylarginine in patients with CKD.J Am Soc Nephrol. 2015 Apr;26(4):935-44. doi: 10.1681/ASN.2013121355. Epub 2014 Aug 22. J Am Soc Nephrol. 2015. PMID: 25150156 Free PMC article.
-
Red ginger-extract nanoemulsion modulates high blood pressure in rats by regulating angiotensin-converting enzyme production.Vet World. 2021 Jan;14(1):176-181. doi: 10.14202/vetworld.2021.176-181. Epub 2021 Jan 21. Vet World. 2021. PMID: 33642802 Free PMC article.
-
Blood pressure-renal blood flow relationships in conscious angiotensin II- and phenylephrine-infused rats.Am J Physiol Renal Physiol. 2013 Oct 1;305(7):F1074-84. doi: 10.1152/ajprenal.00111.2013. Epub 2013 Jul 3. Am J Physiol Renal Physiol. 2013. PMID: 23825067 Free PMC article.
-
Dapagliflozin-entresto protected kidney from renal hypertension via downregulating cell-stress signaling and upregulating SIRT1/PGC-1α/Mfn2-medicated mitochondrial homeostasis.Exp Biol Med (Maywood). 2023 Dec;248(23):2421-2439. doi: 10.1177/15353702231198087. Epub 2023 Dec 7. Exp Biol Med (Maywood). 2023. PMID: 38059322 Free PMC article.
-
Salt-Sensitive Hypertension, Renal Injury, and Renal Vasodysfunction Associated With Dahl Salt-Sensitive Rats Are Abolished in Consomic SS.BN1 Rats.J Am Heart Assoc. 2021 Nov 2;10(21):e020261. doi: 10.1161/JAHA.120.020261. Epub 2021 Oct 23. J Am Heart Assoc. 2021. PMID: 34689582 Free PMC article.
References
-
- Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–1777. - PubMed
-
- Hostetter TH, Olson JL, Rennke HG, et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93. - PubMed
-
- Griffin KA, Kramer H, Bidani AK. Adverse renal consequences of obesity. Am J Physiol Renal Physiol. 2008;294:F685–F696. - PubMed
-
- Bidani AK, Mitchell KD, Schwartz MM, et al. Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney Int. 1990;38:28–38. - PubMed
-
- Griffin KA, Picken MM, Churchill M, et al. Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J Am Soc Nephrol. 2000;11:497–506. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials