Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;37(3):407-16.
doi: 10.1111/ejn.12054. Epub 2012 Nov 9.

Impaired response to hypoxia in the respiratory center is a major cause of neonatal death of the PACAP-knockout mouse

Affiliations

Impaired response to hypoxia in the respiratory center is a major cause of neonatal death of the PACAP-knockout mouse

Satoru Arata et al. Eur J Neurosci. 2013 Feb.

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide expressed widely in nervous tissues. PACAP-knockout ((-/-)) mice display a sudden infant death syndrome (SIDS)-like phenotype, although the underlying physiological mechanism to explain this remains unclear. Here, we report on the presence of abnormal respiratory activity in PACAP(-/-) mice under hypoxic conditions, which provides a basis for the SIDS-like phenotype. PACAP(-/-) mice display a lowered baseline respiratory activity compared with wild-type animals, and an abnormal response to hypoxia. More specifically, PACAP(-/-) mice at postnatal day 7 showed respiratory arrest in response to hypoxia. In contrast, their response to hypercapnic conditions was the same as that of wild-type mice. Histological and real-time PCR analyses indicated that the catecholaminergic system in the medulla oblongata was impaired in PACAP(-/-) mice, suggesting that endogenous PACAP affects respiratory centers in the medulla oblongata via its action on the catecholaminergic system. We propose that disruption of this system is involved in the SIDS-like phenotype of PACAP(-/-) mice. Thus, disorders of the catecholaminergic system involved with O(2) sensing could be implicated in underlying neuronal mechanisms responsible for SIDS.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources