Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 15;8(2):397-404.
doi: 10.1021/cb300487u. Epub 2012 Nov 15.

Rational epitope design for protein targeting

Affiliations

Rational epitope design for protein targeting

Claudio Peri et al. ACS Chem Biol. .

Abstract

We present a new multidisciplinary strategy integrating computational biology with high-throughput microarray analysis aimed to translate molecular understanding of protein-antibody recognition into the design of efficient and selective protein-based analytical and diagnostic tools. The structures of two proteins with different folds and secondary structure contents, namely, the beta-barrel FABP and the α-helical S100B, were used as the basis for the prediction and design of potential antibody-binding epitopes using the recently developed MLCE computational method. Starting from the idea that the structure, dynamics, and stability of a protein-antigen play a key role in the interaction with antibodies, MLCE integrates the analysis of the dynamical and energetic properties of proteins to identify nonoptimized, low-intensity energetic interaction-networks on the surface of the isolated antigens, which correspond to substructures that can aptly be recognized by a binding partner. The identified epitopes were next synthesized as free peptides and used to elicit specific antibodies in rabbits. Importantly, the resulting antibodies were proven to specifically and selectively recognize the original, full-length proteins in microarray-based tests. Competition experiments further demonstrated the specificity of the molecular recognition between the target immobilized proteins and the generated antibodies. Our integrated computational and microarray-based results demonstrate the possibility to rationally discover and design synthetic epitopes able to elicit antibodies specific for full-length proteins starting only from three-dimensional structural information on the target. We discuss implications for diagnosis and vaccine development purposes.

PubMed Disclaimer

Publication types

LinkOut - more resources