On the probability of extinction in a periodic environment
- PMID: 23143337
- DOI: 10.1007/s00285-012-0623-9
On the probability of extinction in a periodic environment
Abstract
For a certain class of multi-type branching processes in a continuous-time periodic environment, we show that the extinction probability is equal to (resp. less than) 1 if the basic reproduction number R(0) is less than (resp. bigger than) 1. The proof uses results concerning the asymptotic behavior of cooperative systems of differential equations. In epidemiology the extinction probability may be used as a time-periodic measure of the epidemic risk. As an example we consider a linearized SEIR epidemic model and data from the recent measles epidemic in France. Discrete-time models with potential applications in conservation biology are also discussed.
Similar articles
-
Deux modèles de population dans un environnement périodique lent ou rapide.J Math Biol. 2020 Mar;80(4):1021-1037. doi: 10.1007/s00285-019-01447-z. Epub 2019 Nov 19. J Math Biol. 2020. PMID: 31745571
-
On the final size of epidemics in random environment.Math Biosci. 2015 Aug;266:10-4. doi: 10.1016/j.mbs.2015.05.004. Epub 2015 May 23. Math Biosci. 2015. PMID: 26013291
-
Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics.J Math Biol. 2021 Apr 8;82(6):48. doi: 10.1007/s00285-021-01603-4. J Math Biol. 2021. PMID: 33830353
-
On linear birth-and-death processes in a random environment.J Math Biol. 2014 Jul;69(1):73-90. doi: 10.1007/s00285-013-0696-0. Epub 2013 Jun 1. J Math Biol. 2014. PMID: 23728211
-
The basic reproduction number in epidemic models with periodic demographics.J Biol Dyn. 2009 Mar;3(2-3):116-29. doi: 10.1080/17513750802304893. J Biol Dyn. 2009. PMID: 22880824
Cited by
-
Quantifying infectious disease epidemic risks: A practical approach for seasonal pathogens.PLoS Comput Biol. 2025 Feb 19;21(2):e1012364. doi: 10.1371/journal.pcbi.1012364. eCollection 2025 Feb. PLoS Comput Biol. 2025. PMID: 39970184 Free PMC article.
-
Characterizing the dynamics of rubella relative to measles: the role of stochasticity.J R Soc Interface. 2013 Sep 11;10(88):20130643. doi: 10.1098/rsif.2013.0643. Print 2013 Nov 6. J R Soc Interface. 2013. PMID: 24026472 Free PMC article.
-
Disease Emergence in Multi-Patch Stochastic Epidemic Models with Demographic and Seasonal Variability.Bull Math Biol. 2020 Nov 24;82(12):152. doi: 10.1007/s11538-020-00831-x. Bull Math Biol. 2020. PMID: 33231753 Free PMC article.
-
Winter is coming: Pathogen emergence in seasonal environments.PLoS Comput Biol. 2020 Jul 6;16(7):e1007954. doi: 10.1371/journal.pcbi.1007954. eCollection 2020 Jul. PLoS Comput Biol. 2020. PMID: 32628658 Free PMC article.
-
Deux modèles de population dans un environnement périodique lent ou rapide.J Math Biol. 2020 Mar;80(4):1021-1037. doi: 10.1007/s00285-019-01447-z. Epub 2019 Nov 19. J Math Biol. 2020. PMID: 31745571
References
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials