Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 15;344(6263):240-2.
doi: 10.1038/344240a0.

Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons

Affiliations

Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons

P T Akins et al. Nature. .

Abstract

Neurons of the neostriatum are richly innervated by cholinergic neurons of intrinsic origin. Both pre- and post-synaptic muscarinic receptors mediate the effects of acetylcholine (ACh). Activation of these receptors is functionally significant, particularly in Parkinson's disease. Current-clamp studies indicate that muscarinic receptors serve to decrease the responsiveness of neostriatal neurons to excitatory inputs. Here we present evidence that this effect is caused, in part, by the muscarinic modulation of the A-current, a transient outward potassium current. The voltage dependence of this current suggests that normally it enhances spike repolarization and slows discharge rate, but does not affect 'synaptic integration'. We find that under the influence of muscarinic agonists, the voltage dependence of A-current activation and inactivation is shifted towards more negative membrane potentials and the peak conductance is increased. Therefore, at relatively hyperpolarized resting potentials, ACh transiently alters the functional role of the A-current, allowing it to suppress excitatory inputs and further slow the discharge rate. But at relatively depolarized resting potentials, ACh increases excitability by removing the A-current through inactivation.

PubMed Disclaimer

LinkOut - more resources