Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii
- PMID: 23149625
- PMCID: PMC4290016
- DOI: 10.1007/s10295-012-1202-1
Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii
Abstract
Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD(680)) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.
Figures




References
-
- Adams MW, Holden JF, Menon AL, Schut GJ, Grunden AM, Hou C, Hutchins AM, Jenny FE, Jr, Kim C, Ma K, Pan G, Roy R, Sapra R, Story SV, Verhagen MF. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2001;183(2):716–724. - PMC - PubMed
-
- Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, Xu Y, Kataeva I, Poole FL, II, Adams MW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol. 2012;194(15):4015–4028. doi: 10.1128/JB.00266-12. - DOI - PMC - PubMed
-
- Blumer-Schuette SE, Ozdemir I, Mistry D, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Woyke T, Mikhailova N, Pati A, Kyrpides NC, Ivanova N, Detter JC, Walston-Davenport K, Han S, Adams MW, Kelly RM. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus. J Bacteriol. 2011 doi: 10.1128/JB.01515-10. - DOI - PMC - PubMed
-
- Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM, Ahring BK. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol. 1999;49(Pt 3):991–996. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources