Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov 8;11(5):/j/sagmb.2012.11.issue-5/1544-6115.1833/1544-6115.1833.xml.
doi: 10.1515/1544-6115.1833.

Large-scale parentage inference with SNPs: an efficient algorithm for statistical confidence of parent pair allocations

Affiliations

Large-scale parentage inference with SNPs: an efficient algorithm for statistical confidence of parent pair allocations

Eric C Anderson. Stat Appl Genet Mol Biol. .

Abstract

Advances in genotyping that allow tens of thousands of individuals to be genotyped at a moderate number of single nucleotide polymorphisms (SNPs) permit parentage inference to be pursued on a very large scale. The intergenerational tagging this capacity allows is revolutionizing the management of cultured organisms (cows, salmon, etc.) and is poised to do the same for scientific studies of natural populations. Currently, however, there are no likelihood-based methods of parentage inference which are implemented in a manner that allows them to quickly handle a very large number of potential parents or parent pairs. Here we introduce an efficient likelihood-based method applicable to the specialized case of cultured organisms in which both parents can be reliably sampled. We develop a Markov chain representation for the cumulative number of Mendelian incompatibilities between an offspring and its putative parents and we exploit it to develop a fast algorithm for simulation-based estimates of statistical confidence in SNP-based assignments of offspring to pairs of parents. The method is implemented in the freely available software SNPPIT. We describe the method in detail, then assess its performance in a large simulation study using known allele frequencies at 96 SNPs from ten hatchery salmon populations. The simulations verify that the method is fast and accurate and that 96 well-chosen SNPs can provide sufficient power to identify the correct pair of parents from amongst millions of candidate pairs.

PubMed Disclaimer

LinkOut - more resources