Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2012;7(11):e49420.
doi: 10.1371/journal.pone.0049420. Epub 2012 Nov 13.

Complement receptor 1 variants confer protection from severe malaria in Odisha, India

Affiliations
Meta-Analysis

Complement receptor 1 variants confer protection from severe malaria in Odisha, India

Aditya K Panda et al. PLoS One. 2012.

Abstract

Background: In Plasmodium falciparum infection, complement receptor-1 (CR1) on erythrocyte's surface and ABO blood group play important roles in formation of rosettes which are presumed to be contributory in the pathogenesis of severe malaria. Although several studies have attempted to determine the association of CR1 polymorphisms with severe malaria, observations remain inconsistent. Therefore, a case control study and meta-analysis was performed to address this issue.

Methods: Common CR1 polymorphisms (intron 27 and exon 22) and blood group were typed in 353 cases of severe malaria (SM) [97 cerebral malaria (CM), 129 multi-organ dysfunction (MOD), 127 non-cerebral severe malaria (NCSM)], 141 un-complicated malaria and 100 healthy controls from an endemic region of Odisha, India. Relevant publications for meta-analysis were searched from the database.

Results: The homozygous polymorphisms of CR1 intron 27 and exon 22 (TT and GG) and alleles (T and G) that are associated with low expression of CR1 on red blood cells, conferred significant protection against CM, MOD and malaria deaths. Combined analysis showed significant association of blood group B/intron 27-AA/exon 22-AA with susceptibility to SM (CM and MOD). Meta-analysis revealed that the CR1 exon 22 low expression polymorphism is significantly associated with protection against severe malaria.

Conclusions: The results of the present study demonstrate that common CR1 variants significantly protect against severe malaria in an endemic area.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Flow diagramme of identifying potential studies for meta-analysis.
Figure 2
Figure 2. Forest plots of CR1 exon 22 polymorphism in association to severe malaria.
Meta-analysis was performed including previous reports and current study by comprehensive meta-analysis software. Random or fixed model of meta-analysis was employed for calculation of the combined effect of all studies. Forest plots evaluating resistance/risk factor of different models to severe malaria are shown.
Figure 3
Figure 3. Forest plots of CR1 intron 27 polymorphism in association to severe malaria.
Meta-analysis was performed including previous reports and current study by comprehensive meta-analysis software. Random or fixed model of meta-analysis was employed for calculation of the combined effect of all studies. Forest plots evaluating resistance/risk factor of different models to severe malaria are shown.

Similar articles

Cited by

References

    1. WHO (2011) World Malaria Report 2011.
    1. Panda AK, Panda SK, Sahu AN, Tripathy R, Ravindran B, et al. (2011) Association of ABO blood group with severe falciparum malaria in adults: case control study and meta-analysis. Malar J 10: 309. - PMC - PubMed
    1. Pattanaik SS, Tripathy R, Panda AK, Sahu AN, Das BK (2012) Bacteraemia in adult patients presenting with malaria in India. Acta Trop. - PubMed
    1. Brown H, Hien TT, Day N, Mai NT, Chuong LV, et al. (1999) Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25: 331–340. - PubMed
    1. Clark IA, Budd AC, Alleva LM, Cowden WB (2006) Human malarial disease: a consequence of inflammatory cytokine release. Malar J 5: 85. - PMC - PubMed

Publication types

MeSH terms