Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy
- PMID: 23154422
- PMCID: PMC3976204
- DOI: 10.1515/hsz-2012-0247
Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy
Abstract
Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions.
Figures
References
-
- Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am. J. Physiol. Cell Physiol. 2005;289:C994–C1001. - PubMed
-
- Adhihetty PJ, O’Leary MF, Chabi B, Wicks KL, Hood DA. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J. Appl. Physiol. 2007;102:1143–1151. - PubMed
-
- Adhihetty PJ, O’Leary MF, Hood DA. Mitochondria in skeletal muscle: adaptable rheostats of apoptotic susceptibility. Exerc. Sport Sci. Rev. 2008;36:116–121. - PubMed
-
- Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G. N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit. Care Med. 2011;39:777–782. - PubMed
-
- Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, Edgerton VR. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am. J. Physiol. 1997;273:C579–C587. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources