Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles
- PMID: 23154584
- PMCID: PMC3528698
- DOI: 10.4161/epi.22901
Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles
Abstract
Chronic lymphocytic leukemia (CLL) can be divided into prognostic subgroups based on the IGHV gene mutational status, and is further characterized by multiple subsets of cases with quasi-identical or stereotyped B cell receptors that also share clinical and biological features. We recently reported differential DNA methylation profiles in IGHV-mutated and IGHV-unmutated CLL subgroups. For the first time, we here explore the global methylation profiles of stereotyped subsets with different prognosis, by applying high-resolution methylation arrays on CLL samples from three major stereotyped subsets: the poor-prognostic subsets #1 (n = 15) and #2 (n = 9) and the favorable-prognostic subset #4 (n = 15). Overall, the three subsets exhibited significantly different methylation profiles, which only partially overlapped with those observed in our previous study according to IGHV gene mutational status. Specifically, gene ontology analysis of the differentially methylated genes revealed a clear enrichment of genes involved in immune response, such as B cell activation (e.g., CD80, CD86 and IL10), with higher methylation levels in subset #1 than subsets #2 and #4. Accordingly, higher expression of the co-stimulatory molecules CD80 and CD86 was demonstrated in subset #4 vs. subset #1, pointing to a key role for these molecules in the crosstalk of CLL subset #4 cells with the microenvironment. In summary, investigation of three prototypic, stereotyped CLL subsets revealed distinct DNA methylation profiles for each subset, which suggests subset-biased patterns of transcriptional control and highlights a key role for epigenetics during leukemogenesis.
Figures
References
-
- Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7. - PubMed
-
- Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54. - PubMed
-
- Tobin G, Thunberg U, Johnson A, Eriksson I, Söderberg O, Karlsson K, et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003;101:4952–7. doi: 10.1182/blood-2002-11-3485. - DOI - PubMed
-
- Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K, et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood. 2004;104:2879–85. doi: 10.1182/blood-2004-01-0132. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources