Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov 15;19(12):561-70.
doi: 10.1101/lm.028068.112.

Age-dependent deficits in fear learning in heterozygous BDNF knock-out mice

Affiliations

Age-dependent deficits in fear learning in heterozygous BDNF knock-out mice

Thomas Endres et al. Learn Mem. .

Abstract

Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF knock-out mice (BDNF(+/-)). Since brain BDNF levels are known to decline with aging, we hypothesized that BDNF(+/-) mice might show reduced fear learning at older ages. Indeed, BDNF(+/-) animals revealed an age-dependent deficit in fear learning 3 mo after birth and beyond. Since there were no alterations between the two genotypes during the conditioning training and when testing short-term memory, this learning deficit most likely reflects a deficit in memory consolidation. Importantly, there were no differences in spontaneous motor behavior and baseline anxiety in BDNF(+/-) animals at any age tested. Following behavioral testing quantification of BDNF levels in the basolateral amygdala with a sensitive BDNF ELISA revealed a positive correlation between the levels of BDNF in the amygdala and the individual learning performance. However, the age-dependent decline in the efficiency of fear conditioning in BDNF(+/-) mice was not accompanied by reduced BDNF expression in the amygdala. Thus, while reduced BDNF levels in general correlate with less efficient fear learning, this lack of BDNF can be compensated in young but not in older animals, suggesting that the cellular mechanisms responsible for fear learning consolidation become BDNF-dependent 3 mo after birth.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources