Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jan;6(1):18-28.
doi: 10.1093/mp/sss130. Epub 2012 Nov 15.

Diverse roles of strigolactones in plant development

Affiliations
Review

Diverse roles of strigolactones in plant development

Philip B Brewer et al. Mol Plant. 2013 Jan.

Abstract

With the discovery of strigolactones as root exudate signals that trigger parasitic weed seed germination, and then as a branching inhibitor and plant hormone, the next phase of strigolactone research has quickly revealed this hormone class as a major player in optimizing plant growth and development. From the early stages of plant evolution, it seems that strigolactones were involved in enabling plants to modify growth in order to gain advantage in competition with neighboring organisms for limited resources. For example, a moss plant can alter its growth in response to strigolactones emanating from a neighbor. Within a higher plant, strigolactones appear to be involved in controlling the balance of resource distribution via strategic modification of growth and development. Most notably, higher plants that encounter phosphate deficiency increase strigolactone production, which changes root growth and promotes fungal symbiosis to enhance phosphate intake. The shoot also changes by channeling resources away from unessential leaves and branches and into the main stem and root system. This hormonal response is a key adaption that radically alters whole-plant architecture in order to optimize growth and development under diverse environmental conditions.

PubMed Disclaimer

Publication types

MeSH terms