Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;118(2):319-28.
doi: 10.3171/2012.10.JNS12186. Epub 2012 Nov 16.

Transcranial magnetic resonance-guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study

Affiliations

Transcranial magnetic resonance-guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study

Stephen J Monteith et al. J Neurosurg. 2013 Feb.

Abstract

Object: Transcranial MR-guided focused ultrasound surgery (MRgFUS) is evolving as a treatment modality in neurosurgery. Until now, the trigeminal nerve was believed to be beyond the treatment envelope of existing high-frequency transcranial MRgFUS systems. In this study, the authors explore the feasibility of targeting the trigeminal nerve in a cadaveric model with temperature assessments using computer simulations and an in vitro skull phantom model fitted with thermocouples.

Methods: Six trigeminal nerves from 4 unpreserved cadavers were targeted in the first experiment. Preprocedural CT scanning of the head was performed to allow for a skull correction algorithm. Three-Tesla, volumetric, FIESTA MRI sequences were performed to delineate the trigeminal nerve and any vascular structures of the cisternal segment. The cadaver was positioned in a focused ultrasound transducer (650-kHz system, ExAblate Neuro, InSightec) so that the focus of the transducer was centered at the proximal trigeminal nerve, allowing for targeting of the root entry zone (REZ) and the cisternal segment. Real-time, 2D thermometry was performed during the 10- to 30-second sonication procedures. Post hoc MR thermometry was performed on a computer workstation at the conclusion of the procedure to analyze temperature effects at neuroanatomical areas of interest. Finally, the region of the trigeminal nerve was targeted in a gel phantom encased within a human cranium, and temperature changes in regions of interest in the skull base were measured using thermocouples.

Results: The trigeminal nerves were clearly identified in all cadavers for accurate targeting. Sequential sonications of 25-1500 W for 10-30 seconds were successfully performed along the length of the trigeminal nerve starting at the REZ. Real-time MR thermometry confirmed the temperature increase as a narrow focus of heating by a mean of 10°C. Postprocedural thermometry calculations and thermocouple experiments in a phantom skull were performed and confirmed minimal heating of adjacent structures including the skull base, cranial nerves, and cerebral vessels. For targeting, inclusion of no-pass regions through the petrous bone decreased collateral heating in the internal acoustic canal from 16.7°C without blocking to 5.7°C with blocking. Temperature at the REZ target decreased by 3.7°C with blocking. Similarly, for midcisternal targeting, collateral heating at the internal acoustic canal was improved from a 16.3°C increase to a 4.9°C increase. Blocking decreased the target temperature increase by 4.4°C for the same power settings.

Conclusions: This study demonstrates focal heating of up to 18°C in a cadaveric trigeminal nerve at the REZ and along the cisternal segment with transcranial MRgFUS. Significant heating of the skull base and surrounding neural structures did not occur with implementation of no-pass regions. However, in vivo studies are necessary to confirm the safety and efficacy of this potentially new, noninvasive treatment.

PubMed Disclaimer

Comment in

  • Letter to the Editor: Trigeminal neuralgia.
    Zheng ZH, Lin Y, Su PS, Wang PW, Tsai WT, Hueng DY. Zheng ZH, et al. J Neurosurg. 2015 Jul;123(1):289-9. doi: 10.3171/2012.11.JNS122202. Epub 2015 May 8. J Neurosurg. 2015. PMID: 25955871 No abstract available.
  • Response.
    Monteith SJ, Elias WJ. Monteith SJ, et al. J Neurosurg. 2015 Jul;123(1):289-90. J Neurosurg. 2015. PMID: 26334072 No abstract available.

Similar articles

Cited by

Publication types

LinkOut - more resources