Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 21;6(12):10614-21.
doi: 10.1021/nn303631d. Epub 2012 Dec 3.

Elasticity of an assembly of disordered nanoparticles interacting via either van der Waals-bonded or covalent-bonded coating layers

Affiliations

Elasticity of an assembly of disordered nanoparticles interacting via either van der Waals-bonded or covalent-bonded coating layers

Adil Ayouch et al. ACS Nano. .

Abstract

Tailoring physical and chemical properties at the nanoscale by assembling nanoparticles currently paves the way for new functional materials. Obtaining the desired macroscopic properties is usually determined by a perfect control of the contact between nanoparticles. Therefore, the physics and chemistry of nanocontacts are one of the central issues for the design of the nanocomposites. Since the birth of atomic force microscopy, crucial advances have been achieved in the quantitative evaluation of van der Waals and Casimir forces in nanostructures and of adhesion between the nanoparticles. We present here an investigation, by a noncontact method, of the elasticity of an assembly of nanoparticles interacting via either van der Waals-bonded or covalent-bonded coating layers. We demonstrate indeed that the ultrafast opto-acoustic technique, based on the generation and detection of hypersound by femtosecond laser pulses, is very sensitive to probe the properties of the nanocontacts. In particular, we observe and evaluate how much the subnanometric molecules present at nanocontacts influence the coherent acoustic phonon propagation along the network of the interconnected silica nanoparticles. Finally, we show that this ultrafast opto-acoustic technique provides quantitative estimates of the rigidity/stiffness of the nanocontacts.

PubMed Disclaimer

Publication types

LinkOut - more resources