Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 28;165(2):110-8.
doi: 10.1016/j.jconrel.2012.11.007. Epub 2012 Nov 16.

Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells

Affiliations

Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells

Isil Altintas et al. J Control Release. .

Abstract

A novel, EGFR-targeted nanomedicine has been developed in the current study. Glutaraldehyde crosslinked albumin nanoparticles with a size of approximately 100nm were loaded with the multikinase inhibitor 17864-L(x)-a platinum-bound sunitinib analogue-which couples the drug to methionine residues of albumin and is released in a reductive environment. Albumin nanoparticles were surface-coated with bifunctional polyethylene glycol 3500 (PEG) and a nanobody-the single variable domain of an antibody-(Ega1) against the epidermal growth factor receptor (EGFR). EGa1-PEG functionalized nanoparticles showed a 40-fold higher binding to EGFR-positive 14C squamous head and neck cancer cells in comparison to PEGylated nanoparticles. 17864-L(x) loaded EGa1-PEG nanoparticles were internalized by clathrin-mediated endocytosis and ultimately digested in lysosomes. The intracellular routing of EGa1 targeted nanoparticles leads to a successful release of the kinase inhibitor in the cell and inhibition of proliferation whereas the non-targeted formulations had no antiproliferative effects on 14C cells. The drug loaded targeted nanoparticles were as effective as the free drug in vitro. These results demonstrate that multikinase inhibitor loaded nanoparticles are interesting nanomedicines for the treatment of EGFR-positive cancers.

PubMed Disclaimer

Publication types

MeSH terms