Stretchable and highly sensitive graphene-on-polymer strain sensors
- PMID: 23162694
- PMCID: PMC3499758
- DOI: 10.1038/srep00870
Stretchable and highly sensitive graphene-on-polymer strain sensors
Abstract
The use of nanomaterials for strain sensors has attracted attention due to their unique electromechanical properties. However, nanomaterials have yet to overcome many technological obstacles and thus are not yet the preferred material for strain sensors. In this work, we investigated graphene woven fabrics (GWFs) for strain sensing. Different than graphene films, GWFs undergo significant changes in their polycrystalline structures along with high-density crack formation and propagation mechanically deformed. The electrical resistance of GWFs increases exponentially with tensile strain with gauge factors of ~10(3) under 2~6% strains and ~10(6) under higher strains that are the highest thus far reported, due to its woven mesh configuration and fracture behavior, making it an ideal structure for sensing tensile deformation by changes in strain. The main mechanism is investigated, resulting in a theoretical model that predicts very well the observed behavior.
Figures





Similar articles
-
Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.ACS Nano. 2015 Nov 24;9(11):10867-75. doi: 10.1021/acsnano.5b03851. Epub 2015 Oct 16. ACS Nano. 2015. PMID: 26468735
-
Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure.Nanoscale. 2014 Nov 7;6(21):13053-9. doi: 10.1039/c4nr03252g. Nanoscale. 2014. PMID: 25247375
-
Multifunctional graphene woven fabrics.Sci Rep. 2012;2:395. doi: 10.1038/srep00395. Epub 2012 May 4. Sci Rep. 2012. PMID: 22563524 Free PMC article.
-
Review of Graphene-Based Textile Strain Sensors, with Emphasis on Structure Activity Relationship.Polymers (Basel). 2021 Jan 1;13(1):151. doi: 10.3390/polym13010151. Polymers (Basel). 2021. PMID: 33401466 Free PMC article. Review.
-
Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors.Biosens Bioelectron. 2019 Jan 1;123:167-177. doi: 10.1016/j.bios.2018.08.037. Epub 2018 Aug 22. Biosens Bioelectron. 2019. PMID: 30174272 Review.
Cited by
-
Ophthalmic Sensors and Drug Delivery.ACS Sens. 2021 Jun 25;6(6):2046-2076. doi: 10.1021/acssensors.1c00370. Epub 2021 May 27. ACS Sens. 2021. PMID: 34043907 Free PMC article. Review.
-
Strong Reinforcement Effects in 2D Cellulose Nanofibril-Graphene Oxide (CNF-GO) Nanocomposites due to GO-Induced CNF Ordering.J Mater Chem A Mater. 2020 Sep 14;8(34):17608-17620. doi: 10.1039/D0TA04406G. Epub 2020 Jul 27. J Mater Chem A Mater. 2020. PMID: 33796318 Free PMC article.
-
Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array.Sci Adv. 2019 Nov 8;5(11):eaav3097. doi: 10.1126/sciadv.aav3097. eCollection 2019 Nov. Sci Adv. 2019. PMID: 31723597 Free PMC article.
-
Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring.Sci Rep. 2018 Sep 5;8(1):13241. doi: 10.1038/s41598-018-31628-7. Sci Rep. 2018. PMID: 30185926 Free PMC article.
-
Detecting Variable Resistance by Fluorescence Intensity Ratio Technology.Sensors (Basel). 2019 May 26;19(10):2400. doi: 10.3390/s19102400. Sensors (Basel). 2019. PMID: 31130683 Free PMC article.
References
-
- Herrmann J., Müller K.-H., Reda T., Baxter G. R., Raguse B., de Groot G. J. J. B., Chai R., Roberts M. & Wieczorek L. Nanoparticle films as sensitive strain gauges. Appl. Phys. Lett. 91, 183105 (2007).
-
- Obitayo W. & Liu T. A Review: Carbon nanotube-based piezoresistive strain sensors. J. Sensors 2012, 652438 (2012).
-
- Fernández-Regúlez M., Plaza J. A., Lora-Tamayo E. & Paulo A. S. Lithography guided horizontal growth of silicon nanowires for the fabrication of ultrasensitive piezoresistive strain gauges. Microelectr. Engin. 87, 1270 (2010).
-
- Zhou J., Gu Y. D., Fei P., Mai W. J., Gao Y. F., Yang R. S., Bao G. & Wang Z. L. Flexible piezotronic strain sensor. Nano Lett. 8, 3035 (2008). - PubMed
-
- Xiao X., Yuan L. Y., Zhong J. W., Ding T. P., Liu Y., Cai Z. X., Rong Y. G., Han H. W., Zhou Y. & Wang Z. L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440 (2011). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources