Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jan;197(2):394-404.
doi: 10.1111/nph.12022. Epub 2012 Nov 19.

Emerging role for RNA-based regulation in plant immunity

Affiliations
Free article
Review

Emerging role for RNA-based regulation in plant immunity

Dorothee Staiger et al. New Phytol. 2013 Jan.
Free article

Abstract

Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.

PubMed Disclaimer

References

    1. Allen E, Xie Z, Gustafson AM, Carrington JC. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221.
    1. Baltz AG, Munschauer M, Schwanhäusser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M et al. 2012. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Molecular Cell 46: 674-690.
    1. Bao N, Lye KW, Barton MK. 2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell 7: 653-662.
    1. Bazzini AA, Lee MT, Giraldez AJ. 2012. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336: 233-237.
    1. Boller T, He SY. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324: 742-744.

Publication types

LinkOut - more resources