Sustaining rapid vesicular release at active zones: potential roles for vesicle tethering
- PMID: 23164531
- PMCID: PMC4748400
- DOI: 10.1016/j.tins.2012.10.001
Sustaining rapid vesicular release at active zones: potential roles for vesicle tethering
Abstract
Rapid information processing in our nervous system relies on high-frequency fusion of transmitter-filled vesicles at chemical synapses. Some sensory synapses possess prominent electron-dense ribbon structures that provide a scaffold for tethering synaptic vesicles at the active zone (AZ), enabling sustained vesicular release. Here, we review functional data indicating that some central and neuromuscular synapses can also sustain vesicle-fusion rates that are comparable to those of ribbon-type sensory synapses. Comparison of the ultrastructure across these different types of synapses, together with recent work showing that cytomatrix proteins can tether vesicles and speed vesicle reloading, suggests that filamentous structures may play a key role in vesicle supply. We discuss potential mechanisms by which vesicle tethering could contribute to sustained high rates of vesicle fusion across ribbon-type, central, and neuromuscular synapses.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Figures




Similar articles
-
Stabilization of spontaneous neurotransmitter release at ribbon synapses by ribbon-specific subtypes of complexin.J Neurosci. 2013 May 8;33(19):8216-26. doi: 10.1523/JNEUROSCI.1280-12.2013. J Neurosci. 2013. PMID: 23658160 Free PMC article.
-
Rolling blackout is required for synaptic vesicle exocytosis.J Neurosci. 2006 Mar 1;26(9):2369-79. doi: 10.1523/JNEUROSCI.3770-05.2006. J Neurosci. 2006. PMID: 16510714 Free PMC article.
-
Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses.J Neurosci. 2016 Jun 22;36(25):6651-67. doi: 10.1523/JNEUROSCI.4335-15.2016. J Neurosci. 2016. PMID: 27335398 Free PMC article.
-
Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicle docking/fusion machinery.J Bioenerg Biomembr. 1998 Aug;30(4):335-45. doi: 10.1023/a:1021985521748. J Bioenerg Biomembr. 1998. PMID: 9758330 Review.
-
[Molecular mechanisms of SNARE-mediated synaptic vesicle exocytosis].Tanpakushitsu Kakusan Koso. 2008 Dec;53(16 Suppl):2078-83. Tanpakushitsu Kakusan Koso. 2008. PMID: 21038588 Review. Japanese. No abstract available.
Cited by
-
Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone.Elife. 2016 Feb 11;5:e13245. doi: 10.7554/eLife.13245. Elife. 2016. PMID: 26880547 Free PMC article.
-
The role of syntaxins in retinal function and health.Front Cell Neurosci. 2024 May 10;18:1380064. doi: 10.3389/fncel.2024.1380064. eCollection 2024. Front Cell Neurosci. 2024. PMID: 38799985 Free PMC article. Review.
-
Relating structure and function of inner hair cell ribbon synapses.Cell Tissue Res. 2015 Jul;361(1):95-114. doi: 10.1007/s00441-014-2102-7. Epub 2015 Jan 22. Cell Tissue Res. 2015. PMID: 25874597 Free PMC article. Review.
-
Blobby is a synaptic active zone assembly protein required for memory in Drosophila.Nat Commun. 2025 Jan 2;16(1):271. doi: 10.1038/s41467-024-55382-9. Nat Commun. 2025. PMID: 39747038 Free PMC article.
-
Munc13-3 superprimes synaptic vesicles at granule cell-to-basket cell synapses in the mouse cerebellum.J Neurosci. 2014 Oct 29;34(44):14687-96. doi: 10.1523/JNEUROSCI.2060-14.2014. J Neurosci. 2014. PMID: 25355221 Free PMC article.
References
-
- Katz B. The Release of Neural Transmitter Substances. Liverpool University Press; 1969.
-
- de Ruyter van Steveninck RR, Laughlin SB. The rate of information transfer at graded-potential synpases. Nature. 1996;379:642–645.
-
- Pangršič T, et al. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat. Neurosci. 2010;13:869–876. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases