Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;10(4):504-10.
doi: 10.2166/wh.2012.084.

Solar inactivation of four Salmonella serovars in fresh and marine waters

Affiliations

Solar inactivation of four Salmonella serovars in fresh and marine waters

Alexandria B Boehm et al. J Water Health. 2012 Dec.

Abstract

Sunlight-mediated disinfection of water is of interest to both the drinking and recreational water quality community of researchers due to its potential to reduce microbial contamination and waterborne illness. Photo-inactivation of enteric bacteria has primarily been investigated using Escherichia coli and laboratory strains of model bacteria. The present study sought to document the photo-inactivation of environmental isolates of Salmonella in filter-sterilized natural seawater and freshwater and to test the hypothesis that diverse Salmonella serovars decay at similar rates both within and between water matrices. The inactivation of Salmonella enterica Typhimurium LT2, Typhimurium ST19, Heidelberg, and Mbandaka was examined in sunlit and dark microcosms. First order decay was observed in sunlit microcosms; the time until 90% inactivation was of the order of 10 min. A significant shoulder, of the order of 1 hr in length, was observed in the freshwater microcosms during which concentrations were stable. Serovar Mdandaka decayed more slowly than other serovars in both seawater and freshwater. The serovars were extremely stable in the dark microcosms showing little to no decay over 53 days. The results document intra-species variation in photo-inactivation, likely owing to differences in intracellular concentrations of photo-sensitizing molecules or molecules that quench reactive species.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources