Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 21;18(52):16649-64.
doi: 10.1002/chem.201203144. Epub 2012 Nov 20.

Enhanced CO2 adsorption over polymeric amines supported on heteroatom-incorporated SBA-15 silica: impact of heteroatom type and loading on sorbent structure and adsorption performance

Affiliations

Enhanced CO2 adsorption over polymeric amines supported on heteroatom-incorporated SBA-15 silica: impact of heteroatom type and loading on sorbent structure and adsorption performance

Yasutaka Kuwahara et al. Chemistry. .

Abstract

Silica supported amine materials are promising compositions that can be used to effectively remove CO(2) from large stationary sources, such as flue gas generated from coal-fired power plants (ca. 10 % CO(2)) and potentially from ambient air (ca. 400 ppm CO(2)). The CO(2) adsorption characteristics of prototypical poly(ethyleneimine)-silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)-impregnated mesoporous silica SBA-15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO(2) in Ar) and ambient air (400 ppm CO(2) in Ar) to assess the effects of heteroatom incorporation on the CO(2) adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO(2) adsorption/desorption performance. The CO(2) adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT-IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO(2) adsorption performance of silica-aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources