Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 May;148(1):1-8.
doi: 10.1111/ppl.12011. Epub 2012 Dec 13.

Molecular elements of low-oxygen signaling in plants

Affiliations
Review

Molecular elements of low-oxygen signaling in plants

Francesco Licausi. Physiol Plant. 2013 May.

Abstract

Oxygen and its limitation are emerging as a crucial factor in plant fitness, growth and development. Recent studies revealed the mechanisms by which oxygen is perceived by plant cells. This sensory system partly relies on an oxygen-mediated branch of the N-end rule pathway for protein degradation acting on a specific clade of ethylene responsive transcription factors (ERF-VII). A complementary regulative step is provided by aerobic sequestration of an ERF-VII protein at the plasma membrane and its timely release when hypoxia occurs. Complete absence of oxygen triggers the transient accumulation of reactive hydrogen peroxide and induces an additional set of reactive oxygen species-related genes involved in both signaling and attenuation of oxidative stress. Moreover, temporary hypoxic environments that are built up as consequence of dense cell packing have been demonstrated to trigger cell-fate determination in maize anthers. Similarly, limited oxygen delivery in bulky fruit or tuber tissues growing in aerobic conditions were shown to stimulate anaerobic-like responses. These advances in low-oxygen signaling and its effect on cell development highlight the importance of taking hypoxia into account in agronomical practices as well as in breeding programs.

PubMed Disclaimer

MeSH terms

LinkOut - more resources