Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov 20;3(6):45.
doi: 10.1186/scrt136.

Hydrodynamic modulation of pluripotent stem cells

Review

Hydrodynamic modulation of pluripotent stem cells

Krista M Fridley et al. Stem Cell Res Ther. .

Abstract

Controlled expansion and differentiation of pluripotent stem cells (PSCs) using reproducible, high-throughput methods could accelerate stem cell research for clinical therapies. Hydrodynamic culture systems for PSCs are increasingly being used for high-throughput studies and scale-up purposes; however, hydrodynamic cultures expose PSCs to complex physical and chemical environments that include spatially and temporally modulated fluid shear stresses and heterogeneous mass transport. Furthermore, the effects of fluid flow on PSCs cannot easily be attributed to any single environmental parameter since the cellular processes regulating self-renewal and differentiation are interconnected and the complex physical and chemical parameters associated with fluid flow are thus difficult to independently isolate. Regardless of the challenges posed by characterizing fluid dynamic properties, hydrodynamic culture systems offer several advantages over traditional static culture, including increased mass transfer and reduced cell handling. This article discusses the challenges and opportunities of hydrodynamic culture environments for the expansion and differentiation of PSCs in microfluidic systems and larger-volume suspension bioreactors. Ultimately, an improved understanding of the effects of hydrodynamics on the self-renewal and differentiation of PSCs could yield improved bioprocessing technologies to attain scalable PSC culture strategies that will probably be requisite for the development of therapeutic and diagnostic applications.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison of hydrodynamic culture systems for pluripotent stem cell culture. Microfluidic devices provide a scale-down approach to examining hydrodynamic effects on pluripotent stem cells with precise spatial and temporal control and high-throughput formats. At the other end of the spectrum, bioreactors can be scaled up utilizing hydrodynamic systems with more complex and heterogeneous flow environments. 2D, two-dimensional; 3D, three-dimensional.
Figure 2
Figure 2
Utility of hydrodynamics in pluripotent stem cell research. Although the physical and chemical effects on pluripotent stem cells can be difficult to isolate, cell signaling and mechanotransduction can be examined by modulating the hydrodynamic flow in culture systems. Understanding the effects of hydrodynamics on pluripotent biology can be increased with high-throughput screening and will facilitate the development of a biomanufacturing in scalable bioreactor systems.

Similar articles

Cited by

References

    1. Martin GR. Isolation of a pluripotent cell-line from mouse embryos cultured in medium conditioned by tetratocarcinoma stem-cells. Proc Natl Acad Sci USA. 1981;78:7634–7638. doi: 10.1073/pnas.78.12.7634. - DOI - PMC - PubMed
    1. Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003;21:183–186. doi: 10.1038/nbt780. - DOI - PubMed
    1. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 1994;265:1098–1101. doi: 10.1126/science.8066449. - DOI - PubMed
    1. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87:27–45. - PubMed
    1. Batchelor GK. An Introduction to Fluid Dynamics. Cambridge: University Press; 1967.

Publication types

LinkOut - more resources