Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear
- PMID: 23172918
- PMCID: PMC3509728
- DOI: 10.1242/dev.066647
Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear
Erratum in
- Development. 2013 Jan 15;140(2):479. Koch, Alicia E [corrected to Koch, Alisa E]
Abstract
This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.
Figures






Similar articles
-
The cytokine macrophage migration inhibitory factor (MIF) acts as a neurotrophin in the developing inner ear of the zebrafish, Danio rerio.Dev Biol. 2012 Mar 1;363(1):84-94. doi: 10.1016/j.ydbio.2011.12.023. Epub 2011 Dec 22. Dev Biol. 2012. PMID: 22210003 Free PMC article.
-
The role of jab1, a putative downstream effector of the neurotrophic cytokine macrophage migration inhibitory factor (MIF) in zebrafish inner ear hair cell development.Exp Neurol. 2018 Mar;301(Pt B):100-109. doi: 10.1016/j.expneurol.2017.09.009. Epub 2017 Sep 18. Exp Neurol. 2018. PMID: 28928022
-
Role of macrophage migration inhibitory factor in age-related hearing loss.Neuroscience. 2014 Oct 24;279:132-8. doi: 10.1016/j.neuroscience.2014.08.042. Epub 2014 Sep 4. Neuroscience. 2014. PMID: 25194790
-
Chemokines and cytokines on the neuroimmunoaxis: Inner ear neurotrophic cytokines in development and disease. Prospects for repair?Exp Neurol. 2018 Mar;301(Pt B):92-99. doi: 10.1016/j.expneurol.2017.10.009. Epub 2017 Nov 11. Exp Neurol. 2018. PMID: 29080793 Review.
-
Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm.Cell Tissue Res. 2015 Jul;361(1):7-24. doi: 10.1007/s00441-014-2031-5. Epub 2014 Nov 9. Cell Tissue Res. 2015. PMID: 25381571 Free PMC article. Review.
Cited by
-
Correlations of MIF polymorphism and serum levels of MIF with glucocorticoid sensitivity of sudden sensorineural hearing loss.J Int Med Res. 2020 Apr;48(4):300060519893870. doi: 10.1177/0300060519893870. Epub 2019 Dec 31. J Int Med Res. 2020. PMID: 31889466 Free PMC article.
-
Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1.Cell Mol Life Sci. 2017 Dec;74(24):4561-4572. doi: 10.1007/s00018-017-2592-z. Epub 2017 Jul 19. Cell Mol Life Sci. 2017. PMID: 28726057 Free PMC article.
-
Protection of Cochlear Ribbon Synapses and Prevention of Hidden Hearing Loss.Neural Plast. 2020 Nov 1;2020:8815990. doi: 10.1155/2020/8815990. eCollection 2020. Neural Plast. 2020. PMID: 33204247 Free PMC article. Review.
-
Profile of MIF in Developing Hippocampus: Association With Cell Proliferation and Neurite Outgrowth.Front Mol Neurosci. 2020 Aug 12;13:147. doi: 10.3389/fnmol.2020.00147. eCollection 2020. Front Mol Neurosci. 2020. PMID: 32903462 Free PMC article.
-
Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease.Front Neurol. 2022 Apr 6;13:861992. doi: 10.3389/fneur.2022.861992. eCollection 2022. Front Neurol. 2022. PMID: 35463143 Free PMC article. Review.
References
-
- Armstrong B. D., Hu Z., Abad C., Yamamoto M., Rodriguez W. I., Cheng J., Tam J., Gomariz R. P., Patterson P. H., Waschek J. A. (2003). Lymphocyte regulation of neuropeptide gene expression after neuronal injury. J. Neurosci. Res. 74, 240–247 - PubMed
-
- Bajetto A., Bonavia R., Barbero S., Florio T., Schettini G. (2001). Chemokines and their receptors in the central nervous system. Front. Neuroendocrinol. 22, 147–184 - PubMed
-
- Barald K. F., Kelley M. W. (2004). From placode to polarization: new tunes in inner ear development. Development 131, 4119–4130 - PubMed
-
- Barald K. F., Lindberg K. H., Hardiman K., Kavka A. I., Lewis J. E., Victor J. C., Gardner C. A., Poniatowski A. (1997). Immortalized cell lines from embryonic avian and murine otocysts: tools for molecular studies of the developing inner ear. Int. J. Dev. Neurosci. 15, 523–540 - PubMed
-
- Bernhagen J., Krohn R., Lue H., Gregory J. L., Zernecke A., Koenen R. R., Dewor M., Georgiev I., Schober A., Leng L., et al. (2007). MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13, 587–596 - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous