Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;61(1):187-93.
doi: 10.1161/HYPERTENSIONAHA.112.202184. Epub 2012 Nov 19.

Ganglion-specific impairment of the norepinephrine transporter in the hypertensive rat

Affiliations

Ganglion-specific impairment of the norepinephrine transporter in the hypertensive rat

Julia Shanks et al. Hypertension. 2013 Jan.

Abstract

Hypertension is associated with enhanced cardiac sympathetic transmission, although the exact mechanisms underlying this are still unknown. We hypothesized that defective function of the norepinephrine uptake transporter (NET) may contribute to the sympathetic phenotype of the spontaneously hypertensive rat, and that this may occur before the development of hypertension itself. The dynamic kinetics of NET were monitored temporally using a novel fluorescent assay of the transporter in cultured postganglionic sympathetic neurons from the cardiac stellate ganglion, the superior cervical ganglion, the celiac ganglia/superior mesenteric ganglia, and the renal sympathetic chain. All NET activity was blocked by desipramine. NET rate was significantly impaired in cardiac stellate sympathetic neurons from the prehypertensive spontaneously hypertensive rat compared with age-matched normotensive Wistar-Kyoto rats. A similar response was seen in hypertensive spontaneously hypertensive rats stellate sympathetic neurons. However, no reduction in transporter rate was observed at either age in the other major noncardiac sympathetic ganglia. Depolarization of cardiac stellate neurons by electrical field stimulation further potentiated the difference in transporter rate observed between the hypertensive and normotensive rats at both developmental ages. In conclusion, dysregulation of the norepinephrine transporter in the hypertensive rat is ganglion-specific, where NET impairment in the stellate neurons may contribute to the increased cardiac norepinephrine spillover seen in hypertension.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources