Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7
- PMID: 23173079
- PMCID: PMC3503143
- DOI: 10.1038/srep00872
Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7
Abstract
Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress.
Figures







Similar articles
-
An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense.Microbiology (Reading). 2008 Jul;154(Pt 7):2096-2105. doi: 10.1099/mic.0.2008/016428-0. Microbiology (Reading). 2008. PMID: 18599837
-
Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7.Res Microbiol. 2021 Sep-Oct;172(6):103875. doi: 10.1016/j.resmic.2021.103875. Epub 2021 Aug 28. Res Microbiol. 2021. PMID: 34461275
-
Carotenoid Biosynthetic Pathways Are Regulated by a Network of Multiple Cascades of Alternative Sigma Factors in Azospirillum brasilense Sp7.J Bacteriol. 2016 Oct 7;198(21):2955-2964. doi: 10.1128/JB.00460-16. Print 2016 Nov 1. J Bacteriol. 2016. PMID: 27551017 Free PMC article.
-
Biosynthesis of carotenoids in Azospirillum brasilense Cd is mediated via squalene (C30) route.Biochem Biophys Res Commun. 2024 Aug 30;722:150154. doi: 10.1016/j.bbrc.2024.150154. Epub 2024 May 22. Biochem Biophys Res Commun. 2024. PMID: 38795456
-
Identification and functional characterization of a fructose-inducible phosphotransferase system in Azospirillum brasilense Sp7.Appl Environ Microbiol. 2025 Feb 19;91(2):e0082824. doi: 10.1128/aem.00828-24. Epub 2025 Jan 16. Appl Environ Microbiol. 2025. PMID: 39817736 Free PMC article.
Cited by
-
Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction.J Bacteriol. 2016 Mar 31;198(8):1218-29. doi: 10.1128/JB.00872-15. Print 2016 Apr. J Bacteriol. 2016. PMID: 26833410 Free PMC article.
-
Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum.BMC Genomics. 2015 Oct 22;16:833. doi: 10.1186/s12864-015-1962-x. BMC Genomics. 2015. PMID: 26489830 Free PMC article.
-
Simplified and representative bacterial community of maize roots.Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2450-E2459. doi: 10.1073/pnas.1616148114. Epub 2017 Mar 8. Proc Natl Acad Sci U S A. 2017. PMID: 28275097 Free PMC article.
-
Autophosphorylation activity of a soluble hexameric histidine kinase correlates with the shift in protein conformational equilibrium.Chem Biol. 2013 Nov 21;20(11):1411-20. doi: 10.1016/j.chembiol.2013.09.008. Epub 2013 Oct 24. Chem Biol. 2013. PMID: 24210218 Free PMC article.
-
Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2.Biomolecules. 2020 Sep 7;10(9):1286. doi: 10.3390/biom10091286. Biomolecules. 2020. PMID: 32906690 Free PMC article.
References
-
- Elías-Arnanz M., Padmanabhan S. & Murillo F. J. Light-dependent gene regulation in nonphototrophic bacteria. Curr. Opin. Microbiol. 14, 128–135 (2011). - PubMed
-
- Sayed Z., Harris F. & Phoenix D. A. A study on the bacterial photo-toxicity of phenothiazinium based photosensitisers. FEMS Immunol. Med. Microbiol. 43, 367–372 (2005). - PubMed
-
- Hellingwerf K. J. The molecular basis of sensing and responding to light in microorganisms. Antonie Van Leeuwenhoek 81, 51–59 (2002). - PubMed
-
- Glaeser J. & Klug G. Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiol. 151, 1927–1938 (2005). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources