Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct 25:66:787-94.
doi: 10.5604/17322693.1015531.

Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins--pilot study

Affiliations
Free article
Review

Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins--pilot study

Malgorzata Bodaszewska-Lubas et al. Postepy Hig Med Dosw (Online). .
Free article

Abstract

Introduction: In this paper, an attempt was made to evaluate the antibacterial potential of standard strains of lactic acid bacteria (LAB) producing bacteriocins of various classes, thus demonstrating various mechanisms of cell membrane damages against the Streptococcus agalactiae strains (Group B Streptococcus, GBS), depending on surface polysaccharides and surface alpha-like protein genes.

Materials/methods: Antimicrobial property of the strains of L. plantarum C 11, L. sakei DSMZ 6333, and L. lactis ATCC 11454 producing bacteriocins: JK and EF plantaricins, sakacin and nisin, respectively, against the GBS strains was evaluated. The chosen to the study GBS strains were represented by serotypes Ia, Ib, II, III, V and they had bca, epsilon, rib, alp2 or alp3 alpha-like protein genes. The experiment was conducted by means of suspension culture and the bacteria count was determined using the serial dilution method.

Results: A great ability of L. plantarum C 11 strain was proven to inhibit the GBS growth. The strain of L. sakei DSMZ 6333 did not demonstrate any ability to inhibit the growth of GBS, whereas L. lactis ATCC 11454 inhibited the growth of S. agalactiae indicator strains to a minor extent. Statistically significant differences were demonstrated between the GBS strains representing various serotypes against the antimicrobial activity of model LAB strains. The least sensitive to the activity of bacteriocins were the strains representing serotypes Ib and III, whereas the strains representing serotype II were the most sensitive. The sensitivity of the GBS strains to the antimicrobial activity of LAB was not dependent on alpha-like protein genes.

Discussion: Among the LAB standard strains producing bacteriocins, the strongest antimicrobial property was observed in the strain of L. plantarum C 11. Because of the generally known and verified strong antagonistic property of the strains of L. plantarum species against indicator bacteria, it is necessary to further pursue the research presented in this paper.

PubMed Disclaimer

Publication types

LinkOut - more resources