Short-term hypercaloric diet induces blunted aortic vasoconstriction and enhanced vasorelaxation via increased nitric oxide synthase 3 activity and expression in Dahl salt-sensitive rats
- PMID: 23176108
- PMCID: PMC3897252
- DOI: 10.1111/apha.12025
Short-term hypercaloric diet induces blunted aortic vasoconstriction and enhanced vasorelaxation via increased nitric oxide synthase 3 activity and expression in Dahl salt-sensitive rats
Abstract
Aim: To elucidate the role of the O(2)(-), H(2)O(2) or NO pathways in aortic angiotensin (Ang)II-induced vasoconstriction in Dahl salt-sensitive (SS) rats compared with control SS-13(BN) rats on a normal or hypercaloric diet.
Methods: Aortic function was assessed using wire myography in 16-week-old rats maintained on a normal diet or a 4-week hypercaloric diet. Nitric oxide synthase (NOS) activity and expression was determined by the conversion of radio-labelled arginine to citrulline and Western blot analysis respectively.
Results: On normal diet, AngII-induced vasoconstriction was greater in SS than SS-13(BN) rats. Polyethylene glycol superoxide dismutase (PEG-SOD) reduced the aortic AngII response similarly in both strains on normal diet. Catalase blunted, whereas N(ω)-Nitro-L-arginine methyl ester (L-NAME) did not affect the AngII response in SS rats. In SS-13(BN) rats, catalase had no effect and L-NAME enhanced AngII response. On hypercaloric diet, aortic AngII responsiveness was reduced in SS but unaltered in SS-13(BN) rats compared with their normal diet counterparts. PEG-SOD reduced the AngII response in both rats on hypercaloric diet. Catalase treatment did not alter aortic AngII response, while L-NAME increased the response in SS rats on hypercaloric diet. In SS-13(BN) rats on hypercaloric diet, catalase reduced and L-NAME did not alter the AngII response. Furthermore, aortic endothelial-dependent vasorelaxation was increased in SS rats on hypercaloric diet compared with normal diet and aortic NOS3 activity and expression was increased.
Conclusion: A short-term hypercaloric diet induces a blunted vasoconstrictive and enhanced vasodilatory phenotype in SS rats, but not in SS-13(BN) rats, via reduced H(2)O(2) and increased NOS3 function.
© 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.
Figures
References
-
- Barton M, Carmona R, Morawietz H, d’Uscio LV, Goettsch W, Hillen H, Haudenschild CC, Krieger JE, Munter K, Lattmann T, Luscher TF, Shaw S. Obesity is associated with tissue-specific activation of renal angiotensin-converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension. 2000;35:329–36. - PubMed
-
- Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, Dominiczak AF. Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation. 2000;101:2206–12. - PubMed
-
- Bhattacharya I, Mundy AL, Widmer CC, Kretz M, Barton M. Regional heterogeneity of functional changes in conduit arteries after high-fat diet. Obesity (Silver Spring) 2008;16:743–8. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
