Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar;73(5):836-49.
doi: 10.1111/tpj.12082. Epub 2013 Feb 12.

Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO₂ levels

Affiliations
Free article

Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO₂ levels

Marion Eisenhut et al. Plant J. 2013 Mar.
Free article

Abstract

Photorespiratory metabolism is essential in all oxygenic photosynthetic organisms. In plants, it is a highly compartmentalized pathway that involves chloroplasts, peroxisomes, mitochondria and the cytoplasm. The metabolic pathway itself is well characterized, and the enzymes required for its function have been identified. However, very little information is available on the transport proteins that catalyze the high metabolic flux between the involved compartments. Here we show that the A BOUT DE SOUFFLE (BOU) gene, which encodes a mitochondrial carrier, is involved in photorespiration in Arabidopsis. BOU was found to be co-expressed with photorespiratory genes in leaf tissues. The knockout mutant bou-2 showed the hallmarks of a photorespiratory growth phenotype, an elevated CO(2) compensation point, and excessive accumulation of glycine. Furthermore, degradation of the P-protein, a subunit of glycine decarboxylase, was demonstrated for bou-2, and is reflected in strongly reduced glycine decarboxylase activity. The photorespiration defect in bou-2 has dramatic consequences early in the seedling stage, which are highlighted by transcriptome studies. In bou-2 seedlings, as in shm1, another photorespiratory mutant, the shoot apical meristem organization is severely compromised. Cell divisions are arrested, leading to growth arrest at ambient CO(2) . Although the specific substrate for the BOU transporter protein remains elusive, we show that it is essential for the function of the photorespiratory metabolism. We hypothesize that BOU function is linked with glycine decarboxylase activity, and is required for normal apical meristems functioning in seedlings.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data