Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation
- PMID: 23181723
- PMCID: PMC4064314
- DOI: 10.1186/gm390
Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation
Abstract
High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.
Figures




Similar articles
-
MAPPIN: a method for annotating, predicting pathogenicity and mode of inheritance for nonsynonymous variants.Nucleic Acids Res. 2017 Oct 13;45(18):10393-10402. doi: 10.1093/nar/gkx730. Nucleic Acids Res. 2017. PMID: 28977528 Free PMC article.
-
Spatial distribution of disease-associated variants in three-dimensional structures of protein complexes.Oncogenesis. 2017 Sep 25;6(9):e380. doi: 10.1038/oncsis.2017.79. Oncogenesis. 2017. PMID: 28945216 Free PMC article.
-
Impact of germline and somatic missense variations on drug binding sites.Pharmacogenomics J. 2017 Mar;17(2):128-136. doi: 10.1038/tpj.2015.97. Epub 2016 Jan 26. Pharmacogenomics J. 2017. PMID: 26810135 Free PMC article.
-
Mining the coding and non-coding genome for cancer drivers.Cancer Lett. 2015 Dec 28;369(2):307-15. doi: 10.1016/j.canlet.2015.09.015. Epub 2015 Oct 1. Cancer Lett. 2015. PMID: 26433158 Review.
-
Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes.Int J Mol Sci. 2018 May 27;19(6):1584. doi: 10.3390/ijms19061584. Int J Mol Sci. 2018. PMID: 29861492 Free PMC article. Review.
Cited by
-
Computational approaches to identify functional genetic variants in cancer genomes.Nat Methods. 2013 Aug;10(8):723-9. doi: 10.1038/nmeth.2562. Nat Methods. 2013. PMID: 23900255 Free PMC article.
-
Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era.FEBS Lett. 2020 Dec;594(24):4233-4246. doi: 10.1002/1873-3468.13781. Epub 2020 Apr 28. FEBS Lett. 2020. PMID: 32239503 Free PMC article. Review.
-
VIPdb, a genetic Variant Impact Predictor Database.Hum Mutat. 2019 Sep;40(9):1202-1214. doi: 10.1002/humu.23858. Epub 2019 Aug 17. Hum Mutat. 2019. PMID: 31283070 Free PMC article.
-
Expanding the computational toolbox for mining cancer genomes.Nat Rev Genet. 2014 Aug;15(8):556-70. doi: 10.1038/nrg3767. Epub 2014 Jul 8. Nat Rev Genet. 2014. PMID: 25001846 Free PMC article. Review.
-
Diagnosis of pancreatic lesions collected by endoscopic ultrasound-guided fine-needle aspiration using next-generation sequencing.Oncol Lett. 2016 Nov;12(5):3875-3881. doi: 10.3892/ol.2016.5168. Epub 2016 Sep 21. Oncol Lett. 2016. PMID: 27895743 Free PMC article.
References
LinkOut - more resources
Full Text Sources