Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov 22:7:90.
doi: 10.1186/1750-1172-7-90.

Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency

Affiliations

Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency

Hugh J McMillan et al. Orphanet J Rare Dis. .

Abstract

Background: D-bifunctional protein (DBP) deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old) with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa.

Methods and results: Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS) platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val) and hydratase domain (c.1547T>C; p.Ile516Thr) of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4). These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP hydratase and dehydrogenase activity were markedly decreased but detectable.

Conclusions: We propose that the DBP phenotype seen in this family represents a distinct and novel subtype of DBP deficiency, which we have termed type IV based on the presence of a missense mutation in each of the domains of DBP resulting in markedly reduced but detectable hydratase and dehydrogenase activity of DBP. Given that the biochemical testing in plasma was normal in these patients, this is likely an underdiagnosed form of DBP deficiency.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Retinal photograph of Patient 1 at 15½ years old identified retinitis pigmentosa. Widespread peripheral retinal atrophy was seen with relative sparing of the central macula. Clinically this corresponds to involvement of peripheral rods and relative sparing of cones.
Figure 2
Figure 2
MRI of the brain. MRI was performed on Patient 1 at 12 years of age. T1W1 sagittal image demonstrates prominent cerebellar atrophy involving superior and middle cerebellar folia. Axial images (not shown) revealed normal subcortical and cerebellar white matter. MR spectroscopy was normal (not shown). Repeat MRI imaging at 16 years old was unchanged (not shown). MRI of the brain (Patient 2) showed a similar pattern but milder cerebellar atrophy (not shown).
Figure 3
Figure 3
Sanger sequencing and segregation. (A) Pedigree of family with DBP deficiency. X=variant; N=normal. (B) Sanger sequencing validation of HSD17B4 variants identified by exome sequencing. Genomic DNA was amplified for sequencing with primers flanking exon 2 and 18 (see text for primer sequences). Asterisks indicate heterozygous mutations. Red X = c.101C>T (p. Ala34Val) at chr5:118792052. Blue X = c.1547T>C (p. Ile516Thr) at chr5:118860954.

References

    1. Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem. 2000;275:16329–16336. doi: 10.1074/jbc.M001994200. - DOI - PubMed
    1. Dieuaide-Noubhani M, Novikov D, Baumgart E, Vanhooren JC, Fransen M, Goethals M, Vandekerckhove J, Van Veldhoven PP. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur J Biochem. 1996;240:660–666. doi: 10.1111/j.1432-1033.1996.0660h.x. - DOI - PubMed
    1. Moller G, van Grunsven EG, Wanders RJ, Adamski J. Molecular basis of D-bifunctional protein deficiency. Mol Cell Endocrinol. 2001;171:61–70. doi: 10.1016/S0303-7207(00)00388-9. - DOI - PubMed
    1. Ferdinandusse S, Denis S, Mooyer PA, Dekker C, Duran M, Soorani-Lunsing RJ, Boltshauser E, Macaya A, Gartner J, Majoie CB, Barth PG, Wanders RJ, Poll-The BT. Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann Neurol. 2006;59:92–104. doi: 10.1002/ana.20702. - DOI - PubMed
    1. Ferdinandusse S, Ylianttila MS, Gloerich J, Koski MK, Oostheim W, Waterham HR, Hiltunen JK, Wanders RJA, Glumoff T. Mutational spectrum of D-bifunctional protein deficiency and structure-based genotype-phenotype analysis. Am J Hum Genet. 2006;78:112–124. doi: 10.1086/498880. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources